Screening and Identification of Microorganisms – Potential Producers of Arachidonic Acid

Microorganisms isolated from water and soil of Kazakhstan to identify potential high-effective producers of the arachidonic acid, exhibiting a wide range of physiological activity and having practical applications were screened. Based on the results of two independent tests (the test on the sensitivity of the growth processes of microorganisms to acetylsalicylic acid - an irreversible inhibitor of PGH-synthase involved in the metabolism of arachidonic acid and its derivatives, the test for inhibition of peroxidase activity of membrane-bounding fraction of PGH - synthase by acetylsalicylic acid) were selected microbial cultures which are potential highproducer of arachidonic acid. They are characterized by a stable strong growth in the laboratory conditions. Identification of microorganism cultures based on morphological, physiological, biochemical and molecular genetic characteristics was performed.

A Simple Constellation Precoding Technique over MIMO-OFDM Systems

This paper studies the design of a simple constellation precoding for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system over Rayleigh fading channels where OFDM is used to keep the diversity replicas orthogonal and reduce ISI effects. A multi-user environment with K synchronous co-channel users is considered. The proposed scheme provides a bandwidth efficient transmission for individual users by increasing the system throughput. In comparison with the existing coded MIMO-OFDM schemes, the precoding technique is designed under the consideration of its low implementation complexity while providing a comparable error performance to the existing schemes. Analytic and simulation results have been presented to show the distinguished error performance.

Calibration of Parallel Multi-View Cameras

This paper focuses on the calibration problem of a multi-view shooting system designed for the production of 3D content for auto-stereoscopic visualization. The considered multiview camera is characterized by coplanar and decentered image sensors regarding to the corresponding optical axis. Based on the Faugéras and Toscani-s calibration approach, a calibration method is herein proposed for the case of multi-view camera with parallel and decentered image sensors. At first, the geometrical model of the shooting system is recalled and some industrial prototypes with some shooting simulations are presented. Next, the development of the proposed calibration method is detailed. Finally, some simulation results are presented before ending with some conclusions about this work.

How Can We Carry Out Green Incentives Most Efficiently?

Green incentives are included in the “American Recovery and Reinvestment Act of 2009" (ARRA). It is, however, unclear how these government incentives can be carried out most effectively according to market-based principles and if they can serve as a catalyst for an accelerated green transformation and an ultimate solution to the current U.S. and global economic and financial crisis. The article will compare the existing U.S. green economic policies with those in Germany, identify problems, and suggest improvements to allow the green stimulus incentives to achieve the best results in the process of an accelerated green transformation. The author argues that the current U.S. green stimulus incentives can only be most successful if they are carried out as part of a visionary, comprehensive, long-term, and consistent strategy of the green economic transformation.

Percolation Transition with Hidden Variables in Complex Networks

A new class of percolation model in complex networks, in which nodes are characterized by hidden variables reflecting the properties of nodes and the occupied probability of each link is determined by the hidden variables of the end nodes, is studied in this paper. By the mean field theory, the analytical expressions for the phase of percolation transition is deduced. It is determined by the distribution of the hidden variables for the nodes and the occupied probability between pairs of them. Moreover, the analytical expressions obtained are checked by means of numerical simulations on a particular model. Besides, the general model can be applied to describe and control practical diffusion models, such as disease diffusion model, scientists cooperation networks, and so on.

A Usability Testing Approach to Evaluate User-Interfaces in Business Administration

This interdisciplinary study is an investigation to evaluate user-interfaces in business administration. The study is going to be implemented on two computerized business administration systems with two distinctive user-interfaces, so that differences between the two systems can be determined. Both systems, a commercial and a prototype developed for the purpose of this study, deal with ordering of supplies, tendering procedures, issuing purchase orders, controlling the movement of the stocks against their actual balances on the shelves and editing them on their tabulations. In the second suggested system, modern computer graphics and multimedia issues were taken into consideration to cover the drawbacks of the first system. To highlight differences between the two investigated systems regarding some chosen standard quality criteria, the study employs various statistical techniques and methods to evaluate the users- interaction with both systems. The study variables are divided into two divisions: independent representing the interfaces of the two systems, and dependent embracing efficiency, effectiveness, satisfaction, error rate etc.

Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification

In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.

Recovering Artifacts from Legacy Systems Using Pattern Matching

Modernizing legacy applications is the key issue facing IT managers today because there's enormous pressure on organizations to change the way they run their business to meet the new requirements. The importance of software maintenance and reengineering is forever increasing. Understanding the architecture of existing legacy applications is the most critical issue for maintenance and reengineering. The artifacts recovery can be facilitated with different recovery approaches, methods and tools. The existing methods provide static and dynamic set of techniques for extracting architectural information, but are not suitable for all users in different domains. This paper presents a simple and lightweight pattern extraction technique to extract different artifacts from legacy systems using regular expression pattern specifications with multiple language support. We used our custom-built tool DRT to recover artifacts from existing system at different levels of abstractions. In order to evaluate our approach a case study is conducted.

Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Optical Induction of 2D and 3D Photonic Lattices in Photorefractive Materials based on Talbot effect

In this paper we report the technique of optical induction of 2 and 3-dimensional (2D and 3D) photonic lattices in photorefractive materials based on diffraction grating self replication -Talbot effect. 1D and 2D different rotational symmery diffraction masks with the periods of few tens micrometers and 532 nm cw laser beam were used in the experiments to form an intensity modulated light beam profile. A few hundred micrometric scale replications of mask generated intensity structures along the beam propagation axis were observed. Up to 20 high contrast replications were detected for 1D annular mask with 30

Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

Physico-Chemical Environment of Coastal Areas in the Vicinity of Lbod And Tidal Link Drain in Sindh, Pakistan after Cyclone 2a

This paper presents the results of preliminary assessment of water quality along the coastal areas in the vicinity of Left Bank Outfall Drainage (LBOD) and Tidal Link Drain (TLD) in Sindh province after the cyclone 2A occurred in 1999. The water samples were collected from various RDs of Tidal Link Drain and lakes during September 2001 to April 2002 and were analysed for salinity, nitrite, phosphate, ammonia, silicate and suspended material in water. The results of the study showed considerable variations in water quality depending upon the location along the coast in the vicinity of LBOD and RDs. The salinity ranged between 4.39–65.25 ppt in Tidal Link Drain samples whereas 2.4–38.05 ppt in samples collected from lakes. The values of suspended material at various RDs of Tidal Link Drain ranged between 56.6–2134 ppm and at the lakes between 68–297 ppm. The data of continuous monitoring at RD–93 showed the range of PO4 (8.6–25.2 μg/l), SiO3 (554.96–1462 μg/l), NO2 (0.557.2–25.2 μg/l) and NH3 (9.38–23.62 μg/l). The concentration of nutrients in water samples collected from different RDs was found in the range of PO4 (10.85 to 11.47 μg/l), SiO3 (1624 to 2635.08 μg/l), NO2 (20.38 to 44.8 μg/l) and NH3 (24.08 to 26.6 μg/l). Sindh coastal areas which situated at the north-western boundary the Arabian Sea are highly vulnerable to flood damages due to flash floods during SW monsoon or impact of sea level rise and storm surges coupled with cyclones passing through Arabian Sea along Pakistan coast. It is hoped that the obtained data in this study would act as a database for future investigations and monitoring of LBOD and Tidal Link Drain coastal waters.

An E-Learning Tool for The Self-Study of Mathematics for the CPE Examination

In this paper, we give an overview of an online elearning tool which has been developed for kids aged from nine to eleven years old in Mauritius for the self-study of Mathematics in order to prepare them for the CPE examination. The software does not intend to render obsolete the existing pedagogical approaches. Nowadays, the teaching-learning process is mainly focused towards the class-room model. Moreover, most of the e-learning platforms that exist are simply static ways of delivering resources using the internet. There is nearly no interaction between the learner and the tool. Our application will enable students to practice exercises online and also work out sample examination papers. Another interesting feature is that the kid will not have to wait for someone to correct the work as the correction will be done online and on the spot. Additional feedback is also provided for some exercises.

Effect of Preloading on the Contact Stress Distribution of a Dovetail Interface

This paper presents the influence of preloading on a) the contact tractions, b) slip levels and c) stresses at the dovetail blade-disc interface of an aero-engine through a three-dimensional (3D) finite element (FE) modeling and analysis. The preloading is applied by an interference fit at the dovetail interface and the bulk loading is applied through the rotational speed of rotor. Preloading at the dovetail interface reduces the peak contact pressure developed due to bulk loading up to 35%, and reduces the peak contact pressure and stress difference between top and bottom contact edges. Increasing the level of preloading reduces the cyclic stress amplitude at the interface up to certain values of preload and as a consequence, an improvement in fatigue life could be expected. Fretting damage, due to vibration and wind milling effect during engine ground condition, can be minimized by preloading the dovetail interface.

High Efficiency Class-F Power Amplifier Design

Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.

Study of Stress Wave Propagation with NHDMOC

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.

Simulation of Snow Covers Area by a Physical based Model

Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.

Analytical Cutting Forces Model of Helical Milling Operations

Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.

Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys

A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.