Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks

To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.

Integrating Bioremediation and Phytoremediation to Clean up Polychlorinated Biphenyls Contaminated Soils

This work involved the use of phytoremediation to remediate an aged soil contaminated with polychlorinated biphenyls (PCBs). At microcosm scale, tests were prepared using soil samples that have been collected in an industrial area with a total PCBs concentration of about 250 μg kg-1. Medicago sativa and Lolium italicum were the species selected in this study that is used as “feasibility test" for full scale remediation. The experiment was carried out with the addition of a mixture of randomly methylatedbeta- cyclodextrins (RAMEB). At the end of the experiment analysis of soil samples showed that in general the presence of plants has led to a higher degradation of most congeners with respect to not vegetated soil. The two plant species efficiencies were comparable and improved by RAMEB addition with a final reduction of total PCBs near to 50%. With increasing the chlorination of the congeners the removal percentage of PCBs progressively decreased.

A Real-Time Signal Processing Technique for MIDI Generation

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.

Development of Online Islamic Medication Expert System (OIMES)

This paper presents an overview of the design and implementation of an online rule-based Expert Systems for Islamic medication. T his Online Islamic Medication Expert System (OIMES) focuses on physical illnesses only. Knowledge base of this Expert System contains exhaustively the types of illness together with their related cures or treatments/therapies, obtained exclusively from the Quran and Hadith. Extensive research and study are conducted to ensure that the Expert System is able to provide the most suitable treatment with reference to the relevant verses cited in Quran or Hadith. These verses come together with their related 'actions' (bodily actions/gestures or some acts) to be performed by the patient to treat a particular illness/sickness. These verses and the instructions for the 'actions' are to be displayed unambiguously on the computer screen. The online platform provides the advantage for patient getting treatment practically anytime and anywhere as long as the computer and Internet facility exist. Patient does not need to make appointment to see an expert for a therapy.

Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Mathematical Modeling of an Avalanche Release and Estimation of Flow Parameters by Numerical Method

Avalanche release of snow has been modeled in the present studies. Snow is assumed to be represented by semi-solid and the governing equations have been studied from the concept of continuum approach. The dynamical equations have been solved for two different zones [starting zone and track zone] by using appropriate initial and boundary conditions. Effect of density (ρ), Eddy viscosity (η), Slope angle (θ), Slab depth (R) on the flow parameters have been observed in the present studies. Numerical methods have been employed for computing the non linear differential equations. One of the most interesting and fundamental innovation in the present studies is getting initial condition for the computation of velocity by numerical approach. This information of the velocity has obtained through the concept of fracture mechanics applicable to snow. The results on the flow parameters have found to be in qualitative agreement with the published results.

Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Extend of Self-Life of Potato Round Slices with Edible Coating, Green Tea and Ascorbic Acid

The effects of coatings based on sodium alginate (S.A) and carboxyl methyl cellulose (CMC) on the color and moisture characteristics of potato round slices were investigated. It is the first time that this combination of polysaccharides is used as edible coating which alone had the best performance as inhibitor of potato color discoloration during the storage of 15 days at 4oC. When ascorbic acid (AA) and green tea (GT) were added in the above edible coating its effects on potato round slices changed. The mixtures of sodium alginate and carboxyl methyl cellulose with ascorbic acid or with green tea behave as a potential moisture barrier, resulting to the extent of potato samples self–life. These data suggests that both GT and AA are potential inhibitors of dehydration in potatoes and not only natural antioxidants.

A Convenient Model for I-V Characteristic of a Solar Cell Generator as an Active Two-Pole with Self-Limitation of Current

A convenient and physically sound mathematical model of the external or I - V characteristic of solar cells generators is presented in this paper. This model is compared with the traditional model of p-n junction. The direct analytical calculation of load regime leads to a quadratic equation, which is importantly to simplify the calculations in the real time.

Survey on Nano-fibers from Acetobacter Xylinum

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Spatial Query Localization Method in Limited Reference Point Environment

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Economical Analysis of Thermal Energy Storage by Partially Operation

Building Sector is the major electricity consumer and it is costly to building owners. Therefore the application of thermal energy storage (TES) has gained attractive to reduce energy cost. Many attractive tariff packages are being offered by the electricity provider to promote TES. The tariff packages offered higher cost of electricity during peak period and lower cost of electricity during off peak period. This paper presented the return of initial investment by implementing a centralized air-conditioning plant integrated with thermal energy storage with partially operation strategies. Building load profile will be calculated hourly according to building specification and building usage trend. TES operation conditions will be designed according to building load demand profile, storage capacity, tariff packages and peak/off peak period. The Payback Period analysis method was used to evaluate economic analysis. The investment is considered a good investment where by the initial cost is recovered less than ten than seven years.

On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Assessing and Managing Intellectual Capital to Support Open Innovation Paradigm

The objective of this paper is to support the application of Open Innovation practices in firms and organizations by the assessment and management of Intellectual Capital. Intellectual Capital constituents are analyzed in order to verify their capability of acting as key drivers of Open Innovation processes and, therefore, of creating value. A methodology is defined to settle a procedure which helps to select the most relevant Intellectual Capital value drivers and to provide Communities of Innovation with strategic and managerial guidelines in sustaining Open Innovation paradigm. An application of the methodology is developed within a specifically addressed project and its results are hereafter examined.

Blast Induced Ground Shock Effects on Pile Foundations

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

Effect of Concentration of Sodium Borohydrate on the Synthesis of Silicon Nanoparticles via Microemulsion Route

The effect of concentration of reduction agent of sodium borohydrate (NaBH4) on the properties of silicon nanoparticles synthesized via microemulsion route is reported. In this work, the concentration of the silicon tetrachloride (SiCl4) that served as silicon source with sodium hydroxide (NaOH) and polyethylene glycol (PEG) as stabilizer and surfactant, respectively, are keep fixed. Four samples with varied concentration of NaBH4 from 0.05 M to 0.20 M were synthesized. It was found that the lowest concentration of NaBH4 gave better formation of silicon nanoparticles.

Viewers of Advertisements in Television and Cinema in the Shadow of Visuality

Despite the internet, which is one of the mass media that has become quite common in recent years, the relationship of Advertisement with Television and Cinema, which have always drawn attention of researchers as basic media and where visual use is in the foreground, have also become the subject of various studies. Based on the assumption that the known fundamental effects of advertisements on consumers are closely related to the creative process of advertisements as well as the nature and characteristics of the medium where they are used, these basic mass media (Television and Cinema) and the consumer motivations of the advertisements they broadcast have become a focus of study. Given that the viewers of the mass media in question have shifted from a passive position to a more active one especially in recent years and approach contents of advertisements, as they do all contents, in a more critical and “pitiless" manner, it is possible to say that individuals make more use of advertisements than in the past and combine their individual goals with the goals of the advertisements. This study, which aims at finding out what the goals of these new individual advertisement use are, how they are shaped by the distinct characteristics of Television and Cinema, where visuality takes precedence as basic mass media, and what kind of places they occupy in the minds of consumers, has determined consumers- motivations as: “Entertainment", “Escapism", “Play", “Monitoring/Discovery", “Opposite Sex" and “Aspirations and Role Models". This study intends to reveal the differences or similarities among the needs and hence the gratifications of viewers who consume advertisements on Television or at the Cinema, which are two basic media where visuality is prioritized.

“Turkestan Autonomy“ - Legitimate Power of Turkestan

In this article, by means of examination of Bolshevists Turkistanskie Vedomosti" newspaper and “Erikti Oylar Organi" and “Turkistanskyi Vestnik" newspapers which had been published during 1917-1918, the fact that “Turkistan Governorship" established in city of Kokand in November of 1917, within the framework of former tsarist Russia Turkistan general-governorship, was the legal government formed as a requisition of people of Turkistan was proved. An examination of these two newspapers providing information regarding history of “Turkistan Autonomy" but having opposite to each other views makes it possible to obtain valuable data concerning history of autonomy which was inappropriately misrepresented during Soviet period.