Denitrification of Wastewater Containing High Nitrate Using a Bioreactor System Packed by Microbial Cellulose

A Laboratory-scale packed bed reactor with microbial cellulose as the biofilm carrier was used to investigate the denitrification of high-strength nitrate wastewater with specific emphasis on the effect the nitrogen loading rate and hydraulic retention time. Ethanol was added as a carbon source for denitrification. As a result of this investigation, it was found that up to 500 mg/l feed nitrate concentration the present system is able to produce an effluent with nitrate content below 10 ppm at 3 h hydraulic retention time. The highest observed denitrification rate was 4.57 kg NO3-N/ (m3 .d) at a nitrate load of 5.64 kg NO3- N/(m3 .d), and removal efficiencies higher than 90% were obtained for loads up to 4.2 kg NO3-N/(m3 .d). A mass relation between COD consumed and NO3-N removed around 2.82 was observed. This continuous-flow bioreactor proved an efficient denitrification system with a relatively low retention time.

Survey on Nano-fibers from Acetobacter Xylinum

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.