Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition

Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP).

Multilevel Arnoldi-Tikhonov Regularization Methods for Large-Scale Linear Ill-Posed Systems

This paper is devoted to the numerical solution of large-scale linear ill-posed systems. A multilevel regularization method is proposed. This method is based on a synthesis of the Arnoldi-Tikhonov regularization technique and the multilevel technique. We show that if the Arnoldi-Tikhonov method is a regularization method, then the multilevel method is also a regularization one. Numerical experiments presented in this paper illustrate the effectiveness of the proposed method.

A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations

In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.

Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.

A Schur Method for Solving Projected Continuous-Time Sylvester Equations

In this paper, we propose a direct method based on the real Schur factorization for solving the projected Sylvester equation with relatively small size. The algebraic formula of the solution of the projected continuous-time Sylvester equation is presented. The computational cost of the direct method is estimated. Numerical experiments show that this direct method has high accuracy.