Classification of Ground Water Resources for Emergency Supply

The article deals with the classification of alternative water resources in terms of potential risks which is the prerequisite for incorporating these water resources to the emergency plans. The classification is based on the quantification of risks resulting from possible damage, disruption or total destruction of water resource caused by natural and anthropogenic hazards, assessment of water quality and availability, traffic accessibility of the assessed resource and finally its water yield. The aim is to achieve the development of an integrated rescue system, which will be capable of supplying the population with drinking water on the whole stricken territory during the states of emergency.

A Visual Cryptography and Statistics Based Method for Ownership Identification of Digital Images

In this paper, a novel copyright protection scheme for digital images based on Visual Cryptography and Statistics is proposed. In our scheme, the theories and properties of sampling distribution of means and visual cryptography are employed to achieve the requirements of robustness and security. Our method does not need to alter the original image and can identify the ownership without resorting to the original image. Besides, our method allows multiple watermarks to be registered for a single host image without causing any damage to other hidden watermarks. Moreover, it is also possible for our scheme to cast a larger watermark into a smaller host image. Finally, experimental results will show the robustness of our scheme against several common attacks.

Analysis of Endovascular Graft Features Affecting Endotension Following Endovascular Aneurysm Repair

Endovascular aneurysm repair is a new and minimally invasive repair for patients with abdominal aortic aneurysm (AAA). This method has potential advantages that are incomparable with other repair methods. However, the enlargement of aneurysm in the absence of endoleak, which is known as endotension, may occur as one of post-operative compliances of this method. Typically, endotension is mainly as a result of pressure transmitted to aneurysm sac by endovascular installed graft. After installation of graft the aneurysm sac reduces significantly but remains non-zero. There are some factors which affect this pressure transmitted. In this study, the geometry features of installed vascular graft have been considered. It is inferred that graft neck angle and iliac bifurcation angle are two factors which can affect the drag force on graft and consequently the pressure transmitted to aneurysm.

Effects of Stream Tube Numbers on Flow and Sediments using GSTARS-3-A Case Study of the Karkheh Reservoir Dam in Western Dezful

Simulation of the flow and sedimentation process in the reservoir dams can be made by two methods of physical and mathematical modeling. The study area was within a region which ranged from the Jelogir hydrometric station to the Karkheh reservoir dam aimed at investigating the effects of stream tubes on the GSTARS-3 model behavior. The methodologies was to run the model based on 5 stream tubes in order to observe the influence of each scenario on longitudinal profiles, cross-section, flow velocity and bed load sediment size. Results further suggest that the use of two stream tubes or more which result in the semi-two-dimensional model will yield relatively closer results to the observational data than a singular stream tube modeling. Moreover, the results of modeling with three stream tubes shown to yield a relatively close results with the observational data. The overall conclusion of the paper is with applying various stream tubes; it would be possible to yield a significant influence on the modeling behavior Vis-a Vis the bed load sediment size.

Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method

The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.

Some Biological and Molecular Characterization of Bean Common Mosaic Necrosis Virus Isolated from Soybean in Tehran Province, Iran

Bean common mosaic necrosis virus (BCMNV) is a potyvirus with a worldwide distribution. This virus causes serious economic losses in Iran in many leguminoses. During 20008, samples were collected from soybeans fields in Tehran Province. Four isolates (S1, S2 and S3) were inoculated on 15 species of Cucurbitaceae, Chenopodiaceae, Solanacae and Leguminosae. Chenopodium quinoa and C. amaranticolor. Did not developed any symptoms.all isolates caused mosaic symptoms on Phaseolus vulgaris cv. Red Kidney and P. vulgaris cv. Bountiful. The molecular weights of coat protein using SDS-PAGE and western blotting were estimated at 33 kDa. Reverse transcription polymerase chain reaction (RT-PCR) was performed using one primer pairs designed by L. XU et al. An approximately 920 bp fragment was amplified with a specific primer.

Effect of Ground Subsidence on Load Sharing and Settlement of Raft and Piled Raft Foundations

In this paper, two centrifugal model tests (case 1: raft foundation, case 2: 2x2 piled raft foundation) were conducted in order to evaluate the effect of ground subsidence on load sharing among piles and raft and settlement of raft and piled raft foundations. For each case, two conditions consisting of undrained (without groundwater pumping) and drained (with groundwater pumping) conditions were considered. Vertical loads were applied to the models after the foundations were completely consolidated by selfweight at 50g. The results show that load sharing by the piles in piled raft foundation (piled load share) for drained condition decreases faster than that for undrained condition. Settlement of both raft and piled raft foundations for drained condition increases more quickly than that for undrained condition. In addition, the settlement of raft foundation increases more largely than the settlement of piled raft foundation for drained condition.

Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Effect of Restaurant Fat on Milk Yield and Composition of Dairy Cows Limit-Fed Concentrate Diet with Free Access to Forage

Ten lactating multiparous Holstein cows were used in a cross-over design with two dietary treatments and 28-d periods (with 14 d as an adaptation) to study the effect of restaurant fat on milk production and composition. Each cow was offered 14.7 kg DM /d of the basal concentrate diet based on barley and corn (crude protein = 17.7%, neutral detergent fiber = 23.5%, and acid detergent fiber = 5.8% of dry matter) with free access to alfalfa. Dietary treatments were arranged as supplying each cow with 0 (CONTROL) or 150 g/day (RF) of restaurant fat. Supplemental RF did not significantly (P > 0.25) affect milk yield, composition, and composition yields, except for milk fat contents. Milk fat contents were depressed (P < 0.05) with supplemental RF. Our results indicate that RF could depress milk fat without affecting milk yield and that the depression in milk fat in response to RF precedes the depression in milk yield.

Integrating the Theory of Constraints and Six Sigma in Manufacturing Process Improvement

Six Sigma is a well known discipline that reduces variation using complex statistical tools and the DMAIC model. By integrating Goldratts-s Theory of Constraints, the Five Focusing Points and System Thinking tools, Six Sigma projects can be selected where it can cause more impact in the company. This research defines an integrated model of six sigma and constraint management that shows a step-by-step guide using the original methodologies from each discipline and is evaluated in a case study from the production line of a Automobile engine monoblock V8, resulting in an increase in the line capacity from 18.7 pieces per hour to 22.4 pieces per hour, a reduction of 60% of Work-In-Process and a variation decrease of 0.73%.

Intuition Operator: Providing Genomes with Reason

In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.

Nonlinear Large Deformation Analysis of Rotor

Reliability assessment and risk analysis of rotating machine rotors in various overload and malfunction situations present challenge to engineers and operators. In this paper a new analytical method for evaluation of rotor under large deformation is addressed. Model is presented in general form to include also composite rotors. Presented simulation procedure is based on variational work method and has capability to account for geometric nonlinearity, large displacement, nonlinear support effect and rotor contacting other machine components. New shape functions are presented which capable to predict accurate nonlinear profile of rotor. The closed form solutions for various operating and malfunction situations are expressed. Analytical simulation results are discussed

Perceptions of Health Risks amongst Tertiary Education Students in Mauritius

A personal estimate of a health risk may not correspond to a scientific assessment of the health risk. Hence, there is a need to investigate perceived health risks in the public. In this study, a young, educated and healthy group of people from a tertiary institute were questioned about their health concerns. Ethics clearance was obtained and data was collected by means of a questionnaire. 362 students participated in the study. Tobacco use, heavy alcohol drinking, illicit drugs, unsafe sex and potential carcinogens were perceived to be the five greatest threats to health in this cohort. On the other hand natural health products, unemployment, unmet contraceptive needs, family violence and homelessness were felt to be the least perceived health risks. Nutrition-related health risks as well as health risks due to physical inactivity and obesity were not perceived as major health threats. Such a study of health perceptions may guide health promotion campaigns.

Perceptions of Health Status and Lifestyle Health Behaviors of Poor People in Mauritius

In Mauritius, much emphasis is put on measures to combat the high prevalence of non-communicable diseases (NCDs). Health promotion campaigns for the adoption of healthy behaviors and screening programs are done regularly by local authorities and NCD surveys are carried out at intervals. However, the health behaviors of the poor have not been investigated so far. This study aims to give an insight on the perceptions of health status and lifestyle health behaviors of poor people in Mauritius. A crosssectional study among 83 persons benefiting from social aid in a selected urban district was carried out. Results showed that 51.8% of respondents perceived that they had good health status. 57.8% had no known NCD whilst 25.3% had hypertension, followed by diabetes (16.9%), asthma (9.6%) and heart disease (7.2%).They had low smoking (10.8%) and alcohol consumption (6.0%) as well as high physical activity prevalence (54.2%). These results were significantly different from the NCD survey carried out in the general population. Consumption of vegetables in the study was high. Overweight and obesity trends were however similar to the NCD survey report 2009. These findings contrast with other international studies showing poor people having poor perceptions of health status and unhealthy behavioral choices. Whether these positive health behaviors of poor people in Mauritius arise out of choice or whether it is because the alternative behavior is too costly remains to be investigated further.

New Approach for Manipulation of Stratified Programs

Negation is useful in the majority of the real world applications. However, its introduction leads to semantic and canonical problems. We propose in this paper an approach based on stratification to deal with negation problems. This approach is based on an extension of predicates nets. It is characterized with two main contributions. The first concerns the management of the whole class of stratified programs. The second contribution is related to usual operations optimizations on stratified programs (maximal stratification, incremental updates ...).

A File Splitting Technique for Reducing the Entropy of Text Files

A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

Pattern Matching Based on Regular Tree Grammars

Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.

Determination of Q and R Matrices for Optimal Pitch Aircraft Control

In this paper, the process of obtaining Q and R matrices for optimal pitch aircraft control system has been described. Since the innovation of optimal control method, the determination of Q and R matrices for such system has not been fully specified. The value of Q and R for optimal pitch aircraft control application, have been simulated and calculated. The suitable results for Q and R have been observed through the performance index (PI). If the PI is small “enough", we would say the Q & R values are suitable for that certain type of optimal control system. Moreover, for the same value of PI, we could have different Q and R sets. Due to the rule-free determination of Q and R matrices, a specific method is brought to find out the rough value of Q and R referring to rather small value of PI.

Building Design to Save Lives when Earthquake May Strike the City

When earthquakes strike the city it results in great loss of lives. The present paper talks about a new innovative design system (MegEifel) for buildings which has a mechanism to mitigate deaths in case any earthquake strikes the city. If buildings will be designed according to MegEifel design then the occupants of the building will be safe even when they are in sleep or are doing day wise activities during the time earthquake strikes. The core structure is suggested to be designed on the principle that more deep the foundations are, the harder it is to uproot the structure. The buildings will have an Eifel rod dug deep into earth which will help save lives in tall buildings when earthquake strikes. This design takes a leverage of protective shells to save lives.

Photovoltaic Small-Scale Wastewater Treatment Project for Rural and New-Cultivated Areas in Egypt

The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution". The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small- Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred.