Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation

In this paper the optimal control strategy for Permanent Magnet Synchronous Motor (PMSM) based drive system is presented. The designed full optimal control is available for speed operating range up to base speed. The optimal voltage space-vector assures input energy reduction and stator loss minimization, maintaining the output energy in the same limits with the conventional PMSM electrical drive. The optimal control with three components is based on the energetically criteria and it is applicable in numerical version, being a nonrecursive solution. The simulation results confirm the increased efficiency of the optimal PMSM drive. The properties of the optimal voltage space vector are shown.

Optimization of Parametric Studies Using Strategies of Sampling Techniques

To improve the efficiency of parametric studies or tests planning the method is proposed, that takes into account all input parameters, but only a few simulation runs are performed to assess the relative importance of each input parameter. For K input parameters with N input values the total number of possible combinations of input values equals NK. To limit the number of runs, only some (totally N) of possible combinations are taken into account. The sampling procedure Updated Latin Hypercube Sampling is used to choose the optimal combinations. To measure the relative importance of each input parameter, the Spearman rank correlation coefficient is proposed. The sensitivity and the influence of all parameters are analyzed within one procedure and the key parameters with the largest influence are immediately identified.

Design of Nonlinear Robust Control in a Class of Structurally Stable Functions

An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.

Hexavalent Chromium Pollution Abatement by use of Scrap Iron

In this study, the reduction of Cr(VI) by use of scrap iron, a cheap and locally available industrial waste, was investigated in continuous system. The greater scrap iron efficiency observed for the first two sections of the column filling indicate that most of the reduction process was carried out in the bottom half of the column filling. This was ascribed to a constant decrease of Cr(VI) concentration inside the filling, as the water front passes from the bottom to the top end of the column. While the bottom section of the column filling was heavily passivated with secondary mineral phases, the top section was less affected by the passivation process; therefore the column filling would likely ensure the reduction of Cr(VI) for time periods longer than 216 hours. The experimental results indicate that fixed beds columns packed with scrap iron could be successfully used for the first step of Cr(VI) polluted wastewater treatment. However, the mass of scrap iron filling should be carefully estimated since it significantly affects the Cr(VI) reduction efficiency.

Optimal Algorithm for Constructing the Delaunay Triangulation in Ed

In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.

Multifunctional Barcode Inventory System for Retailing. Are You Ready for It?

This paper explains the development of Multifunctional Barcode Inventory Management System (MBIMS) to manage inventory and stock ordering. Today, most of the retailing market is still manually record their stocks and its effectiveness is quite low. By providing MBIMS, it will bring effectiveness to retailing market in inventory management. MBIMS will not only save time in recording input, output and refilling the inventory stock, but also in calculating remaining stock and provide auto-ordering function. This system is developed through System Development Life Cycle (SDLC) and the flow and structure of the system is fully built based on requirements of a retailing market. Furthermore, this system has been developed from methodical research and study where each part of the system is vigilantly designed. Thus, MBIMS will offer a good solution to the retailing market in achieving effectiveness and efficiency in inventory management.

Sequential Straightforward Clustering for Local Image Block Matching

Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.

Prediction of Overall Efficiency in Multistage Gear Trains

A mathematical model for determining the overall efficiency of a multistage tractor gearbox including all gear, lubricant, surface finish related parameters and operating conditions is presented. Sliding friction, rolling friction and windage losses were considered as the main sources of power loss in the gearing system. A computer code in FORTRAN was developed to simulate the model. Sliding friction contributes about 98% of the total power loss for gear trains operating at relatively low speeds (less than 2000 rpm input speed). Rolling frictional losses decrease with increased load while windage losses are only significant for gears running at very high speeds (greater than 3000 rpm). The results also showed that the overall efficiency varies over the path of contact of the gear meshes ranging between 94% to 99.5%.

Heating of High-Density Hydrogen by High- Current Arc Radiation

The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.

A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction

This paper presents a physics-based model for the high-voltage fast recovery diodes. The model provides a good trade-off between reverse recovery time and forward voltage drop realized through a combination of lifetime control and emitter efficiency reduction techniques. The minority carrier lifetime can be extracted from the reverse recovery transient response and forward characteristics. This paper also shows that decreasing the amount of the excess carriers stored in the drift region will result in softer characteristics which can be achieved using a lower doping level. The developed model is verified by experiment and the measurement data agrees well with the model.

A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor

This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.

Environmental Management System for Tourist Accommodations in Amphawa, Samut Songkram,Thailand

Amphawa is the most popular weekend destination for both domestic and international tourists in Thailand. More than 112 homestays and resorts have been developed along the water resources. This research aims to initiate appropriate environmental management system for riverside tourist accommodations in Amphawa by investigating current environmental characteristics. Eighty-eight riverside tourist accommodations were survey from specific questionnaire, GPS data were also gathered for spatial analysis. The results revealed that the accommodations are welled manage in regards to some environmental aspects. In order to reduce economic costs, energy efficiency equipment is utilized. A substantial number of tourist accommodations encouraged waste separation, followed by transfer to local administration organization. Grease traps also utilized in order to decrease chemical discharged, grease and oil from canteen and restaurants on natural environment. The most notable mitigation is to initiate environmental friendly cleansers for tourist accommodation along the riverside in tourism destinations.

A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks

A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.

Effective Design Parameters on the End Effect in Single-Sided Linear Induction Motors

Linear induction motors are used in various industries but they have some specific phenomena which are the causes for some problems. The most important phenomenon is called end effect. End effect decreases efficiency, power factor and output force and unbalances the phase currents. This phenomenon is more important in medium and high speeds machines. In this paper a factor, EEF , is obtained by an accurate equivalent circuit model, to determine the end effect intensity. In this way, all of effective design parameters on end effect is described. Accuracy of this equivalent circuit model is evaluated by two dimensional finite-element analysis using ANSYS. The results show the accuracy of the equivalent circuit model.

Influence of Various Factors on Stability of CoSPc in LPG Sweetening Process

IFP Group Technology “Sulfrex process" was used in Iran-s South Pars Gas Complex Refineries for removing sulfur compounds such as mercaptans, carbonyl sulfide and hydrogen sulfide, which uses sulfonated cobalt phthalocyanine dispersed in alkaline solution as catalyst. In this technology, catalyst and alkaline solution were used circularly. However the stability of catalyst due to effect of some parameters would reduce with the running of the unit and therefore sweetening efficiency would be decreased. Hence, the aim of this research is study the factors effecting on the stability of catalyst.

Influence of Ambient Condition on Performance of Wet Compression Process

Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.

Estimating Regression Effects in Com Poisson Generalized Linear Model

Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.

Application of Data Envelopment Analysis to Assess Quality Management Efficiency

This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.

Relevance Feedback within CBIR Systems

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.