Highly Efficient Low Power Consumption Tracking Solar Cells for White LED-Based Lighting System

Although White LED lighting systems powered by solar cells have presented for many years, they are not widely used in today application because of their cost and low energy conversion efficiency. The proposed system use the dc power generated by fixed solar cells module to energize White LED light sources that are operated by directly connected White LED with current limitation resistors, resulting in much more power consumption. This paper presents the use of white LED as a general lighting application powered by tracking solar cells module and using pulse to apply the electrical power to the White LED. These systems resulted in high efficiency power conversion, low power consumption, and long light of the white LED.

Characteristics of Suspended Solids Removal by Electrocoagulation

The electrochemical coagulation of a kaolin suspension was investigated at the currents of 0.06, 0.12, 0.22, 0.44, 0.85 A (corresponding to 0.68, 1.36, 2.50, 5.00, 9.66 mA·cm-2, respectively) for the contact time of 5, 10, 20, 30, and 50 min. The TSS removal efficiency at currents of 0.06 A, 0.12 A and 0.22 A increased with the amount of iron generated by the sacrificial anode, while the removal efficiencies did not increase proportionally with the amount of iron generated at the currents of 0.44 and 0.85 A, where electroflotation was clearly observed. Zeta potential measurement illustrated the presence of the highly positive charged particles created by sorption of highly charged polymeric metal hydroxyl species onto the negative surface charged kaolin particles at both low and high applied currents. The disappearance of the individual peaks after certain contact times indicated the attraction between these positive and negative charged particles causing agglomeration. It was concluded that charge neutralization of the individual species was not the only mechanism operating in the electrocoagulation process at any current level, but electrostatic attraction was likely to co-operate or mainly operate.

Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

A Comparison of Some Thresholding Selection Methods for Wavelet Regression

In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.

Enhanced Economic Evaluation – Approach for a Holistic Evaluation of Factory Planning Variants

The building of a factory can be a strategic investment owing to its long service life. An evaluation that only focuses, for example, on payments for the building, the technical equipment of the factory, and the personnel for the enterprise is – considering the complexity of the system factory – not sufficient for this long-term view. The success of an investment is secured, among other things, by the attainment of nonmonetary goals, too, like transformability. Such aspects are not considered in traditional investment calculations like the net present value method. This paper closes this gap with the enhanced economic evaluation (EWR) for factory planning. The procedure and the first results of an application in a project are presented.

Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.

Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes

The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.

A Modified Fuzzy C-Means Algorithm for Natural Data Exploration

In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.

Electroremediation of Cu-Contaminated Soil

This study investigated the removal efficiency of electrokinetic remediation of copper-contaminated soil at different combinations of enhancement reagents used as anolyte and catholyte. Sodium hydroxide (at 0.1, 0.5, and 1.0 M concentrations) and distilled water were used as anolyte, while lactic acid (at 0.01, 0.1, and 0.5 M concentrations), ammonium citrate (also at 0.01, 0.1, and 0.5 M concentrations) and distilled water were used as catholyte. A continuous voltage application (1.0 VDC/cm) was employed for 240 hours for each experiment. The copper content of the catholyte was determined at the end of the 240-hour period. Optimization was carried out with a Response Surface Methodology - Optimal Design, including F test, and multiple comparison method, to determine which pair of anolyte-catholyte was the most significant for the removal efficiency. "1.0 M NaOH" was found to be the most significant anolyte while it was established that lactic acid was the most significant type of catholyte to be used for the most successful electrokinetic experiments. Concentrations of lactic acid should be at the range of 0.1 M to 0.5 M to achieve maximum percent removal values.

Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Perceptual JPEG Compliant Coding by Using DCT-Based Visibility Thresholds of Color Images

Effective estimation of just noticeable distortion (JND) for images is helpful to increase the efficiency of a compression algorithm in which both the statistical redundancy and the perceptual redundancy should be accurately removed. In this paper, we design a DCT-based model for estimating JND profiles of color images. Based on a mathematical model of measuring the base detection threshold for each DCT coefficient in the color component of color images, the luminance masking adjustment, the contrast masking adjustment, and the cross masking adjustment are utilized for luminance component, and the variance-based masking adjustment based on the coefficient variation in the block is proposed for chrominance components. In order to verify the proposed model, the JND estimator is incorporated into the conventional JPEG coder to improve the compression performance. A subjective and fair viewing test is designed to evaluate the visual quality of the coding image under the specified viewing condition. The simulation results show that the JPEG coder integrated with the proposed DCT-based JND model gives better coding bit rates at visually lossless quality for a variety of color images.

An Evaluation of Average Run Length of MaxEWMA and MaxGWMA Control Charts

Exponentially weighted moving average control chart (EWMA) is a popular chart used for detecting shift in the mean of parameter of distributions in quality control. The objective of this paper is to compare the efficiency of control chart to detect an increases in the mean of a process. In particular, we compared the Maximum Exponentially Weighted Moving Average (MaxEWMA) and Maximum Generally Weighted Moving Average (MaxGWMA) control charts when the observations are Exponential distribution. The criteria for evaluate the performance of control chart is called, the Average Run Length (ARL). The result of comparison show that in the case of process is small sample size, the MaxEWMA control chart is more efficiency to detect shift in the process mean than MaxGWMA control chart. For the case of large sample size, the MaxEWMA control chart is more sensitive to detect small shift in the process mean than MaxGWMA control chart, and when the process is a large shift in mean, the MaxGWMA control chart is more sensitive to detect mean shift than MaxEWMA control chart.

Line Balancing in the Hard Disk Drive Process Using Simulation Techniques

Simulation model is an easy way to build up models to represent real life scenarios, to identify bottlenecks and to enhance system performance. Using a valid simulation model may give several advantages in creating better manufacturing design in order to improve the system performances. This paper presents result of implementing a simulation model to design hard disk drive manufacturing process by applying line balancing to improve both productivity and quality of hard disk drive process. The line balance efficiency showed 86% decrease in work in process, output was increased by an average of 80%, average time in the system was decreased 86% and waiting time was decreased 90%.

Mechanical Design and Theoretical Analysis of a Skip-Cycle Mechanism for an Internal Combustion Engine

Skip cycle is a working strategy for spark ignition engines, which allows changing the effective stroke of an engine through skipping some of the four stroke cycles. This study proposes a new mechanism to achieve the desired skip-cycle strategy for internal combustion engines. The air and fuel leakage, which occurs through the gas exchange, negatively affects the efficiency of the engine at high speeds and loads. An absolute sealing is assured by direct use of poppet valves, which are kept in fully closed position during the skipped mode. All the components of the mechanism were designed according to the real dimensions of the Anadolu Motor's gasoline engine and modeled in 3D by means of CAD software. As the mechanism operates in two modes, two dynamically equivalent models are established to obtain the force and strength analysis for critical components.

Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks

In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.

Development of Web-based Teams Management System in Construction

Construction project control attempts to obtain real-time information and effectively enhance dynamic control and management via information sharing and analysis among project participants to eliminate construction conflicts and project delays. However, survey results for Taiwan indicate that construction commercial project management software is not widely accepted for subcontractors and suppliers. To solve the project communications problems among participants, this study presents a novel system called the Construction Dynamic Teams Communication Management (Con-DTCM) system for small-to-medium sized subcontractors and suppliers in Taiwanese Construction industry, and demonstrates that the Con-DTCM system responds to the most recent project information efficiently and enhances management of project teams (general contractor, suppliers and subcontractors) through web-based environment. Web-based technology effectively enhances information sharing during construction project management, and generates cost savings via the Internet. The main unique characteristic of the proposed Con-DTCM system is extremely user friendly and easily design compared with current commercial project management applications. The Con-DTCM system is applied to a case study of construction of a building project in Taiwan to confirm the proposed methodology and demonstrate the effectiveness of information sharing during the construction phase. The advantages of the Con-DTCM system are in improving project control and management efficiency for general contractors, and in providing dynamic project tracking and management, which enables subcontractors and suppliers to acquire the most recent project-related information. Furthermore, this study presents and implements a generic system architecture.