Overhead Estimation over Capacity of Mobile WiMAX

The IEEE802.16 standard which has emerged as Broadband Wireless Access (BWA) technology, promises to deliver high data rate over large areas to a large number of subscribers in the near future. This paper analyze the effect of overheads over capacity of downlink (DL) of orthogonal frequency division multiple access (OFDMA)–based on the IEEE802.16e mobile WiMAX system with and without overheads. The analysis focuses in particular on the impact of Adaptive Modulation and Coding (AMC) as well as deriving an algorithm to determine the maximum numbers of subscribers that each specific WiMAX sector may support. An analytical study of the WiMAX propagation channel by using Cost- 231 Hata Model is presented. Numerical results and discussion estimated by using Matlab to simulate the algorithm for different multi-users parameters.

A Practical Scheme for Transmission Loss Allocation to Generators and Loads in Restructured Power Systems

This paper presents a practical scheme that can be used for allocating the transmission loss to generators and loads. In this scheme first the share of a generator or load on the current through a branch is determined using Z-bus modified matrix. Then the current components are decomposed and the branch loss allocation is obtained. A motivation of proposed scheme is to improve the results of Z-bus method and to reach more fair allocation. The proposed scheme has been implemented and tested on several networks. To achieve practical and applicable results, the proposed scheme is simulated and compared on the transmission network (400kv) of Khorasan region in Iran and the 14-bus standard IEEE network. The results show that the proposed scheme is comprehensive and fair to allocating the energy losses of a power market to its participants.

Peaceful Coexistence of IEEE 802.11 and IEEE802.16 Standards in 5GHz Unlicensed Bands

Cognitive radio devices have been considered as a key technology for next-generation of wireless communication. These devices in the context of IEEE 802.11 standards and IEEE 802.16 standards, can opportunistically utilize the wireless spectrum to achieve better user performance and improve the overall spectrumutilization efficiency, mainly in the unlicensed 5 GHz bands. However, opportunistic use of wireless spectrum creates news problems such as peaceful coexistence with other wireless technologies, such as the radiolocation systems, as well as understanding the influence of interference that each of these networks can create. In this paper, we suggest a dynamic access model that considerably reduces this interference and allows efficiency and fairness use of the wireless spectrum.

Application of Pulse Doubling in Star-Connected Autotransformer Based 12-Pulse AC-DC Converter for Power Quality Improvement

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

Software Architectural Design Ontology

Software Architecture plays a key role in software development but absence of formal description of Software Architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for Software Architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate Software Architectural design information.

Authentication Analysis of the 802.11i Protocol

IEEE has designed 802.11i protocol to address the security issues in wireless local area networks. Formal analysis is important to ensure that the protocols work properly without having to resort to tedious testing and debugging which can only show the presence of errors, never their absence. In this paper, we present the formal verification of an abstract protocol model of 802.11i. We translate the 802.11i protocol into the Strand Space Model and then prove the authentication property of the resulting model using the Strand Space formalism. The intruder in our model is imbued with powerful capabilities and repercussions to possible attacks are evaluated. Our analysis proves that the authentication of 802.11i is not compromised in the presented model. We further demonstrate how changes in our model will yield a successful man-in-the-middle attack.

Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications

Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.

A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs

Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.

Enhanced Genetic Algorithm Approach for Security Constrained Optimal Power Flow Including FACTS Devices

This paper presents a genetic algorithm based approach for solving security constrained optimal power flow problem (SCOPF) including FACTS devices. The optimal location of FACTS devices are identified using an index called overload index and the optimal values are obtained using an enhanced genetic algorithm. The optimal allocation by the proposed method optimizes the investment, taking into account its effects on security in terms of the alleviation of line overloads. The proposed approach has been tested on IEEE-30 bus system to show the effectiveness of the proposed algorithm for solving the SCOPF problem.

A Novel Optimized JTAG Interface Circuit Design

This paper describes a novel optimized JTAG interface circuit between a JTAG controller and target IC. Being able to access JTAG using only one or two pins, this circuit does not change the original boundary scanning test frequency of target IC. Compared with the traditional JTAG interface which based on IEEE std. 1149.1, this reduced pin technology is more applicability in pin limited devices, and it is easier to control the scale of target IC for the designer.

On the Analysis of Localization Accuracy of Wireless Indoor Positioning Systems using Cramer's Rule

This paper presents an analysis of the localization accuracy of indoor positioning systems using Cramer-s rule via IEEE 802.15.4 wireless sensor networks. The objective is to study the impact of the methods used to convert the received signal strength into the distance that is used to compute the object location in the wireless indoor positioning system. Various methods were tested and the localization accuracy was analyzed. The experimental results show that the method based on the empirical data measured in the non line-of-sight (NLOS) environment yield the highest localization accuracy; with the minimum error distance less than 3 m.

A 3D Virtual Navigation System Integrating User Positioning and Pre-Download Mechanism

This paper takes the actual scene of Aletheia University campus – the Class 2 national monument, the first educational institute in northern Taiwan as an example, to present a 3D virtual navigation system which supports user positioning and pre-download mechanism. The proposed system was designed based on the principle of Voronoi Diagra) to divide the virtual scenes and its multimedia information, which combining outdoor GPS positioning and the indoor RFID location detecting function. When users carry mobile equipments such as notebook computer, UMPC, EeePC...etc., walking around the actual scenes of indoor and outdoor areas of campus, this system can automatically detect the moving path of users and pre-download the needed data so that users will have a smooth and seamless navigation without waiting.

Impact of Implementing VPN to Secure Wireless LAN

Many corporations are seriously concerned about security of networks and therefore, their network supervisors are still reluctant to install WLANs. In this regards, the IEEE802.11i standard was developed to address the security problems, even though the mistrust of the wireless LAN technology is still existing. The thought was that the best security solutions could be found in open standards based technologies that can be delivered by Virtual Private Networking (VPN) being used for long time without addressing any security holes for the past few years. This work, addresses this issue and presents a simulated wireless LAN of IEEE802.11g protocol, and analyzes impact of integrating Virtual Private Network technology to secure the flow of traffic between the client and the server within the LAN, using OPNET WLAN utility. Two Wireless LAN scenarios have been introduced and simulated. These are based on normal extension to a wired network and VPN over extension to a wired network. The results of the two scenarios are compared and indicate the impact of improving performance, measured by response time and load, of Virtual Private Network over wireless LAN.

A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids

These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.

Hybrid Optimization of Emission and Economic Dispatch by the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization

This paper present an efficient and reliable technique of optimization which combined fuel cost economic optimization and emission dispatch using the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization algorithm (PSO) to reduce the cost of fuel and pollutants resulting from fuel combustion by keeping the output of generators, bus voltages, shunt capacitors and transformer tap settings within the security boundary. The performance of the proposed algorithm has been demonstrated on IEEE 30-bus system with six generating units. The results clearly show that the proposed algorithm gives better and faster speed convergence then linearly decreasing inertia weight.

On the Impact of Reference Node Placement in Wireless Indoor Positioning Systems

This paper presents a studyof the impact of reference node locations on the accuracy of the indoor positioning systems. In particular, we analyze the localization accuracy of the RSSI database mapping techniques, deploying on the IEEE 802.15.4 wireless networks. The results show that the locations of the reference nodes used in the positioning systems affect the signal propagation characteristics in the service area. Thisin turn affects the accuracy of the wireless indoor positioning system. We found that suitable location of reference nodes could reduce the positioning error upto 35 %.

Analytical Model of Connection Establishment Duration Calculation in Wireless Networks

It is important to provide possibility of so called “handover" for the mobile subscriber from GSM network to Wi-Fi network and back. To solve specified problem it is necessary to estimate connection time between base station and wireless access point. Difficulty to estimate this parameter is that it doesn-t described in specifications of the standard and, hence, no recommended value is given. In this paper, the analytical model is presented that allows the estimating connection time between base station and IEEE 802.11 access point.

A Dynamically Reconfigurable Arithmetic Circuit for Complex Number and Double Precision Number

This paper proposes an architecture of dynamically reconfigurable arithmetic circuit. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operations. The proposed circuit is based on a complex number multiply-accumulation circuit which is used frequently in the field of digital signal processing. In addition, the proposed circuit performs real number double precision arithmetic operations. The data formats are single and double precision floating point number based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

Distributed Generator Placement and Sizing in Unbalanced Radial Distribution System

To minimize power losses, it is important to determine the location and size of local generators to be placed in unbalanced power distribution systems. On account of some inherent features of unbalanced distribution systems, such as radial structure, large number of nodes, a wide range of X/R ratios, the conventional techniques developed for the transmission systems generally fail on the determination of optimum size and location of distributed generators (DGs). This paper presents a simple method for investigating the problem of contemporaneously choosing best location and size of DG in three-phase unbalanced radial distribution system (URDS) for power loss minimization and to improve the voltage profile of the system. Best location of the DG is determined by using voltage index analysis and size of DG is computed by variational technique algorithm according to available standard size of DGs. This paper presents the results of simulations for 25-bus and IEEE 37- bus Unbalanced Radial Distribution system.

A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise

IEEE 802.15.4a impulse radio-time hopping ultra wide band (IR-TH UWB) physical layer, due to small duty cycle and very short pulse widths is robust against multipath propagation. However, scattering and reflections with the large number of obstacles in indoor channel environments, give rise to dense multipath fading. It imposes serious problem to optimum Rake receiver architectures, for which very large number of fingers are needed. Presence of strong noise also affects the reception of fine pulses having extremely low power spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH UWB in dense multipath and additive white Gaussian noise (AWGN) is proposed to efficiently recover the weak signals with much reduced complexity. It adaptively increases the signal to noise (SNR) by decreasing noise through a recursive least square (RLS) algorithm. For simulation, dense multipath environment of IEEE 802.15.4a industrial non line of sight (NLOS) is employed. The power delay profile (PDF) and the cumulative distribution function (CDF) for the respective channel environment are found. Moreover, the error performance of the proposed architecture is evaluated in comparison with conventional SRake and AWGN correlation receivers. The simulation results indicate a substantial performance improvement with very less number of Rake fingers.