Abstract: Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.
Abstract: Efficient utilization of spectrum resources is a
fundamental issue of wireless communications due to its scarcity.
To improve the efficiency of spectrum utilization, the spectrum
sharing for unlicensed bands is being regarded as one of key
technologies in the next generation wireless networks. A number
of schemes such as Listen-Before-Talk(LBT) and carrier sensor
adaptive transmission (CSAT) have been suggested from this aspect,
but more efficient sharing schemes are required for improving
spectrum utilization efficiency. This work considers an opportunistic
transmission approach and a dynamic Contention Window (CW)
adjustment scheme for LTE-U users sharing the unlicensed spectrum
with Wi-Fi, in order to enhance the overall system throughput. The
decision criteria for the dynamic adjustment of CW are based on
the collision evaluation, derived from the collision probability of the
system. The overall performance can be improved due to the adaptive
adjustment of the CW. Simulation results show that our proposed
scheme outperforms the Distributed Coordination Function (DCF)
mechanism of IEEE 802.11 MAC.
Abstract: Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.
Abstract: The use of wireless technology in industrial networks
has gained vast attraction in recent years. In this paper, we have
thoroughly analyzed the effect of contention window (CW) size on
the performance of IEEE 802.11-based industrial wireless networks
(IWN), from delay and reliability perspective. Results show that the
default values of CWmin, CWmax, and retry limit (RL) are far from
the optimum performance due to the industrial application
characteristics, including short packet and noisy environment. In this
paper, an adaptive CW algorithm (payload-dependent) has been
proposed to minimize the average delay. Finally a simple, but
effective CW and RL setting has been proposed for industrial
applications which outperforms the minimum-average-delay solution
from maximum delay and jitter perspective, at the cost of a little
higher average delay. Simulation results show an improvement of up
to 20%, 25%, and 30% in average delay, maximum delay and jitter
respectively.
Abstract: The potential neuroprotective effect of Phyllantus
nuriri against Fe2+ and sodium nitroprusside (SNP) induced oxidative
stress in mitochondria of rats brain was evaluated. Cellular viability
was assessed by MTT reduction, reactive oxygen species (ROS)
generation was measured using the probe 2,7-dichlorofluoresce
indiacetate (DCFH-DA). Glutathione content was measured using
dithionitrobenzoic acid (DTNB). Fe2+ (10μM) and SNP (5μM)
significantly decreased mitochondrial activity, assessed by MTT
reduction assay, in a dose-dependent manner, this occurred in parallel
with increased glutathione oxidation, ROS production and lipid
peroxidation end-products (thiobarbituric acid reactive substances,
TBARS). The co-incubation with methanolic extract of Phyllantus
nuriri (10-200 μg/ml) reduced the disruption of mitochondrial
activity, gluthathione oxidation, ROS production as well as the
increase in TBARS levels caused by both Fe2+ and SNP in a dose
dependent manner. HPLC analysis of the extract revealed the
presence of gallic acid (20.540.01), caffeic acid (7.930.02), rutin
(25.310.05), quercetin (31.280.03) and kaemferol (14.360.01).
This result suggests that these phytochemicals account for the
protective actions of P. niruri against Fe2+ and SNP -induced
oxidative stress. Our results show that P. nuriri consist important
bioactive molecules in the search for an improved therapy against the
deleterious effects of Fe2+, an intrinsic producer of reactive oxygen
species (ROS), that leads to neuronal oxidative stress and
neurodegeneration.
Abstract: Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.
Abstract: Wireless Sensor Networks (WSN) are emerging
because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure,
motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the
MAC protocols used in wireless Adhoc networks to WSN, simulation
experiments were conducted in Global Mobile Simulator
(GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy
spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.
Abstract: The Mobile Ad-hoc Network (MANET) is a collection of self-configuring and rapidly deployed mobile nodes (routers) without any central infrastructure. Routing is one of the potential issues. Many routing protocols are reported but it is difficult to decide which one is best in all scenarios. In this paper on demand routing protocols DSR and DYMO based on IEEE 802.11 DCF MAC protocol are examined and characteristic summary of these routing protocols is presented. Their performance is analyzed and compared on performance measuring metrics throughput, dropped packets due to non availability of routes, duplicate RREQ generated for route discovery and normalized routing load by varying CBR data traffic load using QualNet 5.0.2 network simulator.
Abstract: IEEE 802.11e is the enhanced version of the IEEE
802.11 MAC dedicated to provide Quality of Service of wireless
network. It supports QoS by the service differentiation and
prioritization mechanism. Data traffic receives different priority
based on QoS requirements. Fundamentally, applications are divided
into four Access Categories (AC). Each AC has its own buffer queue
and behaves as an independent backoff entity. Every frame with a
specific priority of data traffic is assigned to one of these access
categories. IEEE 802.11e EDCA (Enhanced Distributed Channel
Access) is designed to enhance the IEEE 802.11 DCF (Distributed
Coordination Function) mechanisms by providing a distributed
access method that can support service differentiation among
different classes of traffic. Performance of IEEE 802.11e MAC layer
with different ACs is evaluated to understand the actual benefits
deriving from the MAC enhancements.