Using Ferry Access Points to Improve the Performance of Message Ferrying in Delay-Tolerant Networks

Delay-Tolerant Networks (DTNs) are sparse, wireless networks where disconnections are common due to host mobility and low node density. The Message Ferrying (MF) scheme is a mobilityassisted paradigm to improve connectivity in DTN-like networks. A ferry or message ferry is a special node in the network which has a per-determined route in the deployed area and relays messages between mobile hosts (MHs) which are intermittently connected. Increased contact opportunities among mobile hosts and the ferry improve the performance of the network, both in terms of message delivery ratio and average end-end delay. However, due to the inherent mobility of mobile hosts and pre-determined periodicity of the message ferry, mobile hosts may often -miss- contact opportunities with a ferry. In this paper, we propose the combination of stationary ferry access points (FAPs) with MF routing to increase contact opportunities between mobile hosts and the MF and consequently improve the performance of the DTN. We also propose several placement models for deploying FAPs on MF routes. We evaluate the performance of the FAP placement models through comprehensive simulation. Our findings show that FAPs do improve the performance of MF-assisted DTNs and symmetric placement of FAPs outperforms other placement strategies.

Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

Biodegradation of PCP by the Rhizobacteria Isolated from Pentachlorophenol-tolerant Crop Species

Pentachlorophenol (PCP) is a polychlorinated aromatic compound that is widespread in industrial effluents and is considered to be a serious pollutant. Among the variety of industrial effluents encountered, effluents from tanning industry are very important and have a serious pollution potential. PCP is also formed unintentionally in effluents of paper and pulp industries. It is highly persistent in soils and is lethal to a wide variety of beneficial microorganisms and insects, human beings and animals. The natural processes that breakdown toxic chemicals in the environment have become the focus of much attention to develop safe and environmentfriendly deactivation technologies. Microbes and plants are among the most important biological agents that remove and degrade waste materials to enable their recycling in the environment. The present investigation was carried out with the aim of developing a microbial system for bioremediation of PCP polluted soils. A number of plant species were evaluated for their ability to tolerate different concentrations of pentachlorophenol (PCP) in the soil. The experiment was conducted for 30 days under pot culture conditions. The toxic effect of PCP on plants was studied by monitoring seed germination, plant growth and biomass. As the concentration of PCP was increased to 50 ppm, the inhibition of seed germination, plant growth and biomass was also increased. Although PCP had a negative effect on all plant species tested, maize and groundnut showed the maximum tolerance to PCP. Other tolerating crops included wheat, safflower, sunflower, and soybean. From the rhizosphere soil of the tolerant seedlings, as many as twenty seven PCP tolerant bacteria were isolated. From soybean, 8; sunflower, 3; safflower 8; maize 2; groundnut and wheat, 3 each isolates were made. They were screened for their PCP degradation potentials. HPLC analyses of PCP degradation revealed that the isolate MAZ-2 degraded PCP completely. The isolate MAZ-1 was the next best isolate with 90 per cent PCP degradation. These strains hold promise to be used in the bioremediation of PCP polluted soils.

2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images

In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.

Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup

For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)

Research into Concrete Blocks with Waste Glass

In this paper, a parametric experimental study for producing paving blocks using fine and coarse waste glass is presented. Some of the physical and mechanical properties of paving blocks having various levels of fine glass (FG) and coarse glass (CG) replacements with fine aggregate (FA) are investigated. The test results show that the replacement of FG by FA at level of 20% by weight has a significant effect on the compressive strength, flexural strength, splitting tensile strength and abrasion resistance of the paving blocks as compared with the control sample because of puzzolanic nature of FG. The compressive strength, flexural strength, splitting tensile strength and abrasion resistance of the paving block samples in the FG replacement level of 20% are 69%, 90%, 47% and 15 % higher as compared with the control sample respectively. It is reported in the earlier works the replacement of FG by FA at level of 20% by weight suppress the alkali-silica reaction (ASR) in the concrete. The test results show that the FG at level of 20% has a potential to be used in the production of paving blocks. The beneficial effect on these properties of CG replacement with FA is little as compared with FG.

Biometric Technology in Securing the Internet Using Large Neural Network Technology

The article examines the methods of protection of citizens' personal data on the Internet using biometric identity authentication technology. It`s celebrated their potential danger due to the threat of loss of base biometric templates. To eliminate the threat of compromised biometric templates is proposed to use neural networks large and extra-large sizes, which will on the one hand securely (Highly reliable) to authenticate a person by his biometrics, and on the other hand make biometrics a person is not available for observation and understanding. This article also describes in detail the transformation of personal biometric data access code. It`s formed the requirements for biometrics converter code for his work with the images of "Insider," "Stranger", all the "Strangers". It`s analyzed the effect of the dimension of neural networks on the quality of converters mystery of biometrics in access code.

Extraction of Temporal Relation by the Creation of Historical Natural Disaster Archive

In historical science and social science, the influence of natural disaster upon society is a matter of great interest. In recent years, some archives are made through many hands for natural disasters, however it is inefficiency and waste. So, we suppose a computer system to create a historical natural disaster archive. As the target of this analysis, we consider newspaper articles. The news articles are considered to be typical examples that prescribe the temporal relations of affairs for natural disaster. In order to do this analysis, we identify the occurrences in newspaper articles by some index entries, considering the affairs which are specific to natural disasters, and show the temporal relation between natural disasters. We designed and implemented the automatic system of “extraction of the occurrences of natural disaster" and “temporal relation table for natural disaster."

A Wind Farm Reduced Order Model Using Integral Manifold Theory

Due to the increasing penetration of wind energy, it is necessary to possess design tools that are able to simulate the impact of these installations in utility grids. In order to provide a net contribution to this issue a detailed wind park model has been developed and is briefly presented. However, the computational costs associated with the performance of such a detailed model in describing the behavior of a wind park composed by a considerable number of units may render its practical application very difficult. To overcome this problem integral manifolds theory has been applied to reduce the order of the detailed wind park model, and therefore create the conditions for the development of a dynamic equivalent which is able to retain the relevant dynamics with respect to the existing a.c. system. In this paper integral manifold method has been introduced for order reduction. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than singular perturbation method.

Multi-view Description of Real-Time Systems- Architecture

Real-time embedded systems should benefit from component-based software engineering to handle complexity and deal with dependability. In these systems, applications should not only be logically correct but also behave within time windows. However, in the current component based software engineering approaches, a few of component models handles time properties in a manner that allows efficient analysis and checking at the architectural level. In this paper, we present a meta-model for component-based software description that integrates timing issues. To achieve a complete functional model of software components, our meta-model focuses on four functional aspects: interface, static behavior, dynamic behavior, and interaction protocol. With each aspect we have explicitly associated a time model. Such a time model can be used to check a component-s design against certain properties and to compute the timing properties of component assemblies.

Investigation of Shear Thickening Liquid Protection Fibrous Material

The stab resistance performance of newly developed fabric composites composed of hexagonal paper honeycombs, filled with shear thickening fluid (STF), and woven Kevlar® fabric or UHMPE was investigated in this study. The STF was prepared by dispersing submicron SiO2 particles into polyethylene glycol (PEG). Our results indicate that the STF-Kevlar composite possessed lower penetration depth than that of neat Kevlar. In other words, the STF-Kevlar composite can attain the same energy level in stab-resistance test with fewer layers of Kevlar fabrics than that of the neat Kevlar fabrics. It also indicates that STF can be used for the fabrication of flexible body armors and can provide improved protection against stab threats. We found that the stab resistance of the STF-Kevlar composite increases with the increase of SiO2 concentration in STF. Moreover, the silica particles functionalized with silane coupling agent can further improve the stab resistance.

Digital Narrative as a Change Agent to Teach Reading to Media-Centric Students

Because today-s media centric students have adopted digital as their native form of communication, teachers are having increasingly difficult time motivating reluctant readers to read and write. Our research has shown these text-averse individuals can learn to understand the importance of reading and writing if the instruction is based on digital narratives. While these students are naturally attracted to story, they are better at consuming them than creating them. Therefore, any intervention that utilizes story as its basis needs to include instruction on the elements of story making. This paper presents a series of digitally-based tools to identify potential weaknesses of visually impaired visual learners and to help motivate these and other media-centric students to select and complete books that are assigned to them

Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

Metallographic Analysis of Laser and Mechanically Formed HSLA Steel

This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.

Measuring the Development Level of Chinese Regional Service Industry: An Empirical Analysis based on Entropy Weight and TOPSIS

Using entropy weight and TOPSIS method, a comprehensive evaluation is done on the development level of Chinese regional service industry in this paper. Firstly, based on existing research results, an evaluation index system is constructed from the scale of development, the industrial structure and the economic benefits. An evaluation model is then built up based on entropy weight and TOPSIS, and an empirical analysis is conducted on the development level of service industries in 31 Chinese provinces during 2006 and 2009 from the two dimensions or time series and cross section, which provides new idea for assessing regional service industry. Furthermore, the 31 provinces are classified into four categories based on the evaluation results, and deep analysis is carried out on the evaluation results.

Weight-Based Query Optimization System Using Buffer

Fast retrieval of data has been a need of user in any database application. This paper introduces a buffer based query optimization technique in which queries are assigned weights according to their number of execution in a query bank. These queries and their optimized executed plans are loaded into the buffer at the start of the database application. For every query the system searches for a match in the buffer and executes the plan without creating new plans.

Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors

Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.

Distributed Relay Selection and Channel Choice in Cognitive Radio Network

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Product Ecodesign Approaches in ISO 14001 Certified Companies

The aim of the study was to investigate whether there is the promotion of product ecodesign measures as a result of adopting ISO 14001 certification in manufacturing companies in the Republic of Slovenia. Companies gave the most of their product development attention to waste and energy reduction during manufacturing process and reduction of material consumption per unit of product. Regarding the importance of different ecodesign criteria reduction of material consumption per unit of product was reported as the most important criterion. Less attention is paid to endof- life issues considering recycling or packaging. Most manufacturing enterprises considered ISO 14001 standard as a very useful tool or at least a useful tool helping them to accelerate and establish product ecodesign activities. Two most frequently considered ecodesign drivers are increased competitive advantage and legal requirements and two most important barriers are high development costs and insufficient market demand.

Human Settlement, Land Management and Health in Sub Saharan Cities

An epidemiological cross sectional study was undertaken in Yaoundé in 2002 and updated in 2005. Focused on health within the city, the objectives were to measure diarrheal prevalence and to identify the risk factors associated with them. Results of microbiological examinations have revealed an urban average prevalence rate of 14.5%. Access to basic services in the living environment appears to be an important risk factor for diarrheas. Statistical and spatial analyses conducted have revealed that prevalence of diarrheal diseases vary among the two main types of settlement (informal and planned). More importantly, this study shows that, diarrhea prevalence rates (notably bacterial and parasitic diarrheas) vary according to the sub- category of settlements. The study draws a number of theoretical and policy implications for researchers and policy decision makers.