Abstract: Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.
Abstract: This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.
Abstract: This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.
Abstract: This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.
Abstract: This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.
Abstract: In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.
Abstract: Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding. Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.
Abstract: Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.
Abstract: This paper investigates the application of metallic
coatings on high fiber volume fraction carbon/epoxy polymer matrix
composites. For the grip of the metallic layer, a method of modifying
the surface of the composite by introducing a mixture of copper and
steel powder (filler powders) which can reduce the impact of thermal
spray particles. The powder was introduced to the surface at the time
of the forming. Arc spray was used to project the zinc coating layer.
The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are
characterized by optical microscopy, SEM and image analysis. The
samples were studied also in terms of hardness and erosion resistance.
This investigation did not reveal any visible evidence damage to the
substrates. The hardness of zinc layer was about 25.94 MPa and the
porosity was around (∼6.70%). The erosion test showed that the zinc
coating improves the resistance to erosion. Based on the results
obtained, we can conclude that thermal spraying allows the production
of protective coating on PMC. Zinc coating has been identified as a
compatible material with the substrate. The filler powders layer
protects the substrate from the impact of hot particles and allows
avoiding the rupture of brittle carbon fibers.
Abstract: This paper reports the viability of developing Zn-27Al
alloy matrix hybrid composites reinforced with alumina, graphite and
fly ash (solid waste bye product of coal in thermal power plants).
This research work was aimed at developing low cost-high
performance Zn-27Al matrix composite with low density. Alumina
particulates (Al2O3), graphite added with 0, 2, 3, 4 and 5 wt% fly ash
were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy
as matrix using two-step stir casting method. Density measurement,
estimated percentage porosity, tensile testing, micro hardness
measurement and optical microscopy were used to assess the
performance of the composites produced. The results show that the
hardness, ultimate tensile strength, and percent elongation of the
hybrid composites decrease with increase in fly ash content. The
maximum decrease in hardness and ultimate tensile strength of
13.72% and 15.25% respectively were observed for composite grade
containing 5wt% fly ash. The percentage elongation of composite
sample without fly ash is 8.9% which is comparable with that of the
sample containing 2wt% fly ash with percentage elongation of 8.8%.
The fracture toughness of the fly ash containing composites was
however superior to those of composites without fly ash with 5wt%
fly ash containing composite exhibiting the highest fracture
toughness. The results show that fly ash can be utilized as
complementary reinforcement in ZA-27 alloy matrix composite to
reduce cost.
Abstract: It is an established fact that polymers have several
physical limitations such as low stiffness and low resistance to
impact on loading. Hence, polymers do not usually have requisite
mechanical strength for application in various fields. The
reinforcement by high strength fibers provides the polymer
substantially enhanced mechanical properties and makes them more
suitable for a large number of diverse applications. This research
evaluates the effects of particulate Cow bone and Groundnut shell
additions on the mechanical properties and microstructure of cow
bone and groundnut shell reinforced epoxy composite in order to
assess the possibility of using it as a material for engineering
applications. Cow bone and groundnut shell particles reinforced with
epoxy (CBRPC and GSRPC) was prepared by varying the cow bone
and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A
Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce
with epoxy was also prepared. The mechanical properties of the
developed composites were investigated. Optical microscopy was
used to examine the microstructure of the composites. The results
revealed that mechanical properties did not increase uniformly with
additions in filler but exhibited maximum properties at specific
percentages of filler additions. From the Microscopic evaluation, it
was discovered that homogeneity decreases with increase in % filler,
this could be due to poor interfacial bonding.
Abstract: In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.
Abstract: The aim of this study is to investigate formability of
Al based closed cell metallic foams at high temperature. The foam
specimens with rectangular section were produced from
AlMg1Si0.6TiH20.8 alloy preform material. Bending and free
bending tests based on gravity effect were applied to foam specimens
at high temperatures. During the tests, the time-angular deformation
relationships with various temperatures were determined.
Deformation types formed in cell walls were investigated by means
of Scanning Electron Microscopy (SEM) and optical microscopy.
Bending deformation about 90° was achieved without any defect at
high temperatures. The importance of a critical temperature and
deformation rate was emphasized in maintaining the deformation.
Significant slip lines on surface of cell walls at tensile zones of
bending specimen were observed. At high strain rates, the microcrack
formation in boundaries of elongated grains was determined.
Abstract: The study is devoted to define the optimal conditions
for the nitriding of pure iron at atmospheric pressure by using NH3-
Ar-C3H8 gas mixtures. After studying the mechanisms of phase
formation and mass transfer at the gas-solid interface, a mathematical
model is developed in order to predict the nitrogen transfer rate in the
solid, the ε-carbonitride layer growth rate and the nitrogen and
carbon concentration profiles. In order to validate the model and to
show its possibilities, it is compared with thermogravimetric
experiments, analyses and metallurgical observations (X-ray
diffraction, optical microscopy and electron microprobe analysis).
Results obtained allow us to demonstrate the sound correlation
between the experimental results and the theoretical predictions.
Abstract: This study demonstrates the feasibility of joining the commercial pure copper plates by friction stir welding (FSW). Microstructure, microhardness and tensile properties in terms of the joint efficiency were found 94.03 % compare to as receive base material (BM). The average hardness at the top was higher than bottom. Hardness of weld zone was higher than the base material. Different microstructure zones were revealed by optical microscopy and scanning electron microscopy. The stirred zone (SZ) exhibited primary two phases namely, recrystallized grains and fine precipitates in matrix of copper.
Abstract: In this paper, the application of thermal spray
coatings in high speed shafts by a revolution up to 23000 RPM
has been studied. Gas compressor shafts are worn in contact
zone with journal therefore will be undersized. Wear
mechanisms of compressor shaft were identified. The
predominant wear mechanism is abrasion wear. The worn
surface was coated by hard WC-Co cermets using high
velocity oxy fuel (HVOF) after preparation. The shafts were in
satisfactory service in 8000h period. The metallurgical and
Tribological studies has been made on the worn and coated
shaft using optical microscopy, scanning electron microscopy
(SEM) and X-ray diffraction.
Abstract: Silver/polylactide nanocomposites (Ag/PLA-NCs) were
synthesized via chemical reduction method in diphase solvent. Silver
nitrate and sodium borohydride were used as a silver precursor
and reducing agent in the polylactide (PLA). The properties of
Ag/PLA-NCs were studied as a function of the weight percentages
of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to
the weight of PLA. The Ag/PLA-NCs were characterized by Xray
diffraction (XRD), transmission electron microscopy (TEM),
electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis)
and Fourier transform infrared spectroscopy (FT-IR). XRD patterns
confirmed that Ag-NPs crystallographic planes were face centered
cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs
were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed
excellent dispersion and interaction between Ag-NPs and PLA films.
The generation of silver nanoparticles was confirmed from the UVvisible
spectra. FT-IR spectra showed that there were no significant
differences between PLA and Ag/PLA-NCs films. The synthesized
Ag/PLA-NCs were stable in organic solution over a long period of
time without sign of precipitation.
Abstract: In this paper, the residual stress of thermal spray
coatings in gas turbine component by curvature method has been
studied. The samples and shaft were coated by hard WC-12Co
cermets using high velocity oxy fuel (HVOF) after preparation in
same conditions. The curvature of coated samples was measured by
using of coordinate measurement machine (CMM). The metallurgical
and Tribological studies has been made on the coated shaft using
optical microscopy and scanning electron microscopy (SEM)
Abstract: The mechanical and tribological properties in WC-Co
coatings are strongly affected by hardness and elasticity
specifications. The results revealed the effect of spraying distance on
microhardness and elasticity modulus of coatings. The metallurgical
studies have been made on coated samples using optical microscopy,
scanning electron microscopy (SEM).
Abstract: Superplastic deformation and high temperature load
relaxation behavior of coarse-grained iron aluminides with the
composition of Fe-28 at.% Al have been investigated. A series of load
relaxation and tensile tests were conducted at temperatures ranging
from 600 to 850oC. The flow curves obtained from load relaxation
tests were found to have a sigmoidal shape and to exhibit stress vs.
strain rate data in a very wide strain rate range from 10-7/s to 10-2/s.
Tensile tests have been conducted at various initial strain rates ranging
from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was
obtained at the initial strain rate of 3×10-5/s and the maximum strain
rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy.
Microstructure observation through the optical microscopy (OM) and
the electron back-scattered diffraction (EBSD) technique has been
carried out on the deformed specimens and it has revealed the
evidences for grain boundary migration and grain refinement to occur
during superplastic deformation, suggesting the dynamic
recrystallization mechanism. The addition of Cr by the amount of 5
at.% appeared to deteriorate the superplasticity of the binary iron
aluminide. By applying the internal variable theory of structural
superplasticity, the addition of Cr has been revealed to lower the
contribution of the frictional resistance to dislocation glide during high
temperature deformation of the Fe3Al alloy.