Abstract: Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.
Abstract: Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.
Abstract: Spacer grid assembly supporting the nuclear fuel rods
is an important concern in the design of structural components of a
Pressurized Water Reactor (PWR). The spacer grid is composed by
springs and dimples which are formed from a strip sheet by means of
blanking and stamping processes. In this paper, the blanking process
and tooling parameters are evaluated by means of a 2D plane-strain
finite element model in order to evaluate the punch load and quality
of the sheared edges of Inconel 718 strips used for nuclear spacer
grids. A 3D finite element model is also proposed to predict the
tooling loads resulting from the stamping process of a preformed
Inconel 718 strip and to analyse the residual stress effects upon the
spring and dimple design geometries of a nuclear spacer grid.
Abstract: The aim of this paper is to experimentally discover the workability coefficient of the Inconel 718 material by using a slide turning machining. Two different types of cutting inserts, one made of carbide and the other one made of ceramic, are being used. The purpose is to compare measured results and recommend the appropriate materials and cutting parameters for a machining of the Inconel 718. Furthermore, the durability of inserts with the chosen wear criterion is being compared for different cutting speeds. Machinability of these materials is a crucial characteristic as it allows us to shorten the technological cycle time and increase the machining productivity. And this is of great importance from an economic point of view.
Abstract: Inconel 718, a nickel based super-alloy is an
extensively used alloy, accounting for about 50% by weight of
materials used in an aerospace engine, mainly in the gas turbine
compartment. This is owing to their outstanding strength and
oxidation resistance at elevated temperatures in excess of 5500 C.
Machining is a requisite operation in the aircraft industries for the
manufacture of the components especially for gas turbines. This
paper is concerned with optimization of the surface roughness when
turning Inconel 718 with cermet inserts. Optimization of turning
operation is very useful to reduce cost and time for machining. The
approach is based on Response Surface Method (RSM). In this work,
second-order quadratic models are developed for surface roughness,
considering the cutting speed, feed rate and depth of cut as the cutting
parameters, using central composite design. The developed models
are used to determine the optimum machining parameters. These
optimized machining parameters are validated experimentally, and it
is observed that the response values are in reasonable agreement with
the predicted values.