Abstract: This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.
Abstract: The hydrogenated amorphous carbon films (α-C:H)
were deposited on p-type Si (100) substrates at different thicknesses by
radio frequency plasma enhanced chemical vapor deposition
technique (rf-PECVD). Raman spectra display asymmetric
diamond-like carbon (DLC) peaks, representative of the α-C:H films.
The decrease of intensity ID/IG ratios revealed the sp3 content arise at
different thicknesses of the α-C:H films. In terms of mechanical
properties, the high hardness and elastic modulus values showed the
elastic and plastic deformation behaviors related to sp3 content in
amorphous carbon films. Electrochemical properties showed that the
α-C:H films exhibited excellent corrosion resistance in air-saturated
3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness
increasing affected the small sp2 clusters in matrix, restricting the
velocity transfer and exchange of electrons. The deposited α-C:H films
exhibited excellent mechanical properties and corrosion resistance.
Abstract: A diamond-like carbon (DLC) based solid-lubricant
film was designed and DLC films were successfully prepared using a
microwave plasma enhanced magnetron sputtering deposition
technology. Post-test characterizations including Raman
spectrometry, X-ray diffraction, nano-indentation test, adhesion test,
friction coefficient test were performed to study the influence of
substrate bias voltage on the mechanical properties of the W- and
S-doped DLC films. The results indicated that the W- and S-doped
DLC films also had the typical structure of DLC films and a better
mechanical performance achieved by the application of a substrate
bias of -200V.