Fatigue Life of an Anti-Roll Bar of a Passenger Vehicle

In the present paper, Fatigue life assessment of an anti-roll bar component of a passenger vehicle, is investigated by ANSYS 11 software. A stress analysis is also carried out by the finite element technique for the determination of highly stressed regions on the bar. Anti-roll bar is a suspension element used at the front, rear, or at both ends of a car that reduces body roll by resisting any unequal vertical motion between the pair of wheels to which it is connected. As a first stage, fatigue damage models proposed by some well-known references and the corresponding assumptions are discussed and some enhancements are proposed. Then, fracture analysis of an anti-roll bar of an automobile is carried out. The analysed type of the anti-roll bar is especially important as many cases are reported about the fracture after a 100,000 km of travel fatigue and fracture conditions. This paper demonstrates fatigue life of an anti-roll bar and then evaluated by experimental analytically results from other researcher.

Preliminary Investigation on Combustion Characteristics of Rice Husk in FBC

The experimental results on combustion of rice husk in a conical fluidized bed combustor (referred to as the conical FBC) using silica sand as the bed material are presented in this paper. The effects of excess combustion air and combustor loading as well as the sand bed height on the combustion pattern in FBC were investigated. Temperatures and gas concentrations (CO and NO) along over the combustor height as well as in the flue gas downstream from the ash collecting cyclone were measured. The results showed that the axial temperature profiles in FBC were explicitly affected by the combustor loading whereas the excess air and bed height were found to have minor influences on the temperature pattern. Meanwhile, the combustor loading and the excess air significantly affected the axial CO and NO concentration profiles; however, these profiles were almost independent of the bed height. The combustion and thermal efficiencies for this FBC were quantified for different operating conditions.

On the Analysis of Bandwidth Management for Hybrid Load Balancing Scheme in WLANs

In wireless networks, bandwidth is scare resource and it is essential to utilize it effectively. This paper analyses effects of using different bandwidth management techniques on the network performances of the Wireless Local Area Networks (WLANs) that use hybrid load balancing scheme. In particular, we study three bandwidth management schemes, namely Complete Sharing (CS), Complete Partitioning (CP), and Partial Sharing (PS). Performances of these schemes are evaluated by simulation experiments in term of percentage of network association blocking. Our results show that the CS scheme can provide relatively low blocking percentage in various network traffic scenarios whereas the PS scheme can enhance quality of services of the multimedia traffic with rather small expenses on the blocking percentage of the best effort traffic.

Calculating Strain Energy in Multi-Surface Models of Cyclic Plasticity

When considering the development of constitutive equations describing the behavior of materials under cyclic plastic strains, different kinds of formulations can be adopted. The primary intention of this study is to develop computer programming of plasticity models to accurately predict the life of engineering components. For this purpose, the energy or cyclic strain is computed in multi-surface plasticity models in non-proportional loading and to present their procedures and codes results.

New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller

A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.

The Impact of Occupational Stress on Quality of Work Life among the Staff of e-Workspace

With the advent of new technologies, factors related to mental health in e-workspaces are taken into consideration more than ever. Studies have revealed that one of the factors affecting the productivity of employees in an organization is occupational stress. Another influential factor is quality of work life which is important in the improvement of work environment conditions and organizational efficiency. In order to uncover the quality of work life level and to investigate the impact of occupational stress on quality of work life among information technology employees in Iran, a cross-sectional study design was applied and data were gathered using a questionnaire validated by a group of experts. The results of the study showed that information technology staffs have average level of both occupational stress and quality of work life. Furthermore, it was found that occupational stress has a negative impact on quality of work life. In addition, the same results were observed for role ambiguity, role conflict, role under-load, work-pace, work repetitiveness and tension toward quality of work life. No significant relation was found between role overload and quality of work life. Finally, directions for future research are proposed and discussed.

Cardiopulmonary Exercise Testing in Young Asthmatic Children Ages 6-10 Years Old

The aim of this study was to establish the feasibility of a minute incremental exercise testing protocol in young asthma children. Twenty-two children with clinically diagnosed mild to moderate asthma volunteered to participate. The maximum incremental exercise test was performed using a cycle ergometer with an electromagnetic braking. A warm-up unloaded for 2 minutes then the workload was started at 40 watts for 2 minutes, and then stepwise increments of 8 watts per 2 minutes were applied. The pedaling frequency was set at 50 rpm. Ventilation and gas exchange were measured with a breath-by-breath automatic metabolic measurement system. Results showed that this test was well tolerated by all asthmatic children. Most of the children reached the VO2 plateau and satisfied the criteria for maximal respiratory exchange ratio of ≥ 1. This Study demonstrated that this testing protocol was suitable for young asthmatic children.

Experimental Study of Eccentrically Loaded Columns Strengthened Using a Steel Jacketing Technique

An experimental study of Reinforced Concrete, RC, columns strengthened using a steel jacketing technique was conducted. The jacketing technique consisted of four steel vertical angles installed at the corners of the column joined by horizontal steel straps confining the column externally. The effectiveness of the technique was evaluated by testing the RC column specimens under eccentric monotonic loading until failure occurred. Strain gauges were installed to monitor the strains in the internal reinforcement as well as the external jacketing system. The effectiveness of the jacketing technique was demonstrated, and the parameters affecting the technique were studied.

Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children

This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.

Developing a Sustainable Educational Portal for the D-Grid Community

Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.

A Simplified Approach for Load Flow Analysis of Radial Distribution Network

This paper presents a simple approach for load flow analysis of a radial distribution network. The proposed approach utilizes forward and backward sweep algorithm based on Kirchoff-s current law (KCL) and Kirchoff-s voltage law (KVL) for evaluating the node voltages iteratively. In this approach, computation of branch current depends only on the current injected at the neighbouring node and the current in the adjacent branch. This approach starts from the end nodes of sub lateral line, lateral line and main line and moves towards the root node during branch current computation. The node voltage evaluation begins from the root node and moves towards the nodes located at the far end of the main, lateral and sub lateral lines. The proposed approach has been tested using four radial distribution systems of different size and configuration and found to be computationally efficient.

Capacity of Overloaded DS-CDMA System on Rayleigh Fading Channel with Timing Error

The number of users supported in a DS-CDMA cellular system is typically less than spreading factor (N), and the system is said to be underloaded. Overloading is a technique to accommodate more number of users than the spreading factor N. In O/O overloading scheme, the first set is assigned to the N synchronous users and the second set is assigned to the additional synchronous users. An iterative multistage soft decision interference cancellation (SDIC) receiver is used to remove high level of interference between the two sets. Performance is evaluated in terms of the maximum number acceptable users so that the system performance is degraded slightly compared to the single user performance at a specified BER. In this paper, the capacity of CDMA based O/O overloading scheme is evaluated with SDIC receiver. It is observed that O/O scheme using orthogonal Gold codes provides 25% channel overloading (N=64) for synchronous DS-CDMA system on an AWGN channel in the uplink at a BER of 1e-5.For a Rayleigh faded channel, the critical capacity is 40% at a BER of 5e-5 assuming synchronous users. But in practical systems, perfect chip timing is very difficult to maintain in the uplink.. We have shown that the overloading performance reduces to 11% for a timing synchronization error of 0.02Tc for a BER of 1e-5.

Predictability Analysis on HIV/AIDS System using Hurst Exponents

Methods of contemporary mathematical physics such as chaos theory are useful for analyzing and understanding the behavior of complex biological and physiological systems. The three dimensional model of HIV/AIDS is the basis of active research since it provides a complete characterization of disease dynamics and the interaction of HIV-1 with the immune system. In this work, the behavior of the HIV system is analyzed using the three dimensional HIV model and a chaotic measure known as the Hurst exponent. Results demonstrate that Hurst exponents of CD4, CD8 cells and viral load vary nonlinearly with respect to variations in system parameters. Further, it was observed that the three dimensional HIV model can accommodate both persistent (H>0.5) and anti-persistent (H

High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor

A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.

Influence of Cyclic Thermal Loading on Fatigue Behavior of Thermal Barrier Coatings

Thermally insulating ceramic coatings also known as thermal barrier coatings (TBCs) have been essential technologies to improve the performance and efficiency of advanced gas turbines in service at extremely high temperatures. The damage mechanisms of air-plasma sprayed YSZ thermal barrier coatings (TBC) with various microstructures were studied by microscopic techniques after thermal cycling. The typical degradation of plasma TBCs that occurs during cyclic furnace testing of an YSZ and alumina coating on a Titanium alloy are analyzed. During the present investigation the effects of topcoat thickness, bond coat oxidation, thermal cycle lengths and test temperature are investigated using thermal cycling. These results were correlated with stresses measured by a spectroscopic technique in order to understand specific damage mechanism. The failure mechanism of former bond coats was found to involve fracture initiation at the thermally grown oxide (TGO) interface and at the TGO bond coat interface. The failure mechanism of the YZ was found to involve combination of fracture along the interface between TGO and bond coat.

Fuzzy Expert System Design for Determining Wearing Properties of Nitrided and Non Nitrided Steel

This paper proposes a Fuzzy Expert System design to determine the wearing properties of nitrided and non nitrided steel. The proposed Fuzzy Expert System approach helps the user and the manufacturer to forecast the wearing properties of nitrided and non nitrided steel under specified laboratory conditions. Surfaces of the engineering components are often nitrided for improving wear, corosion, fatigue specifications. A major property of nitriding process is reducing distortion and wearing of the metalic alloys. A Fuzzy Expert System was developed for determining the wearing and durability properties of nitrided and non nitrided steels that were tested under different loads and different sliding speeds in the laboratory conditions.

The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames

Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.

Design and Implementation of Shared Memory based Parallel File System Logging Method for High Performance Computing

I/O workload is a critical and important factor to analyze I/O pattern and file system performance. However tracing I/O operations on the fly distributed parallel file system is non-trivial due to collection overhead and a large volume of data. In this paper, we design and implement a parallel file system logging method for high performance computing using shared memory-based multi-layer scheme. It minimizes the overhead with reduced logging operation response time and provides efficient post-processing scheme through shared memory. Separated logging server can collect sequential logs from multiple clients in a cluster through packet communication. Implementation and evaluation result shows low overhead and high scalability of this architecture for high performance parallel logging analysis.

Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading

A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.

Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.