Overloading Scheme for Cellular DS-CDMA using Quasi-Orthogonal Sequences and Iterative Interference Cancellation Receiver

Overloading is a technique to accommodate more number of users than the spreading factor N. This is a bandwidth efficient scheme to increase the number users in a fixed bandwidth. One of the efficient schemes to overload a CDMA system is to use two sets of orthogonal signal waveforms (O/O). The first set is assigned to the N users and the second set is assigned to the additional M users. An iterative interference cancellation technique is used to cancel interference between the two sets of users. In this paper, the performance of an overloading scheme in which the first N users are assigned Walsh-Hadamard orthogonal codes and extra users are assigned the same WH codes but overlaid by a fixed (quasi) bent sequence [11] is evaluated. This particular scheme is called Quasi- Orthogonal Sequence (QOS) O/O scheme, which is a part of cdma2000 standard [12] to provide overloading in the downlink using single user detector. QOS scheme are balance O/O scheme, where the correlation between any set-1 and set-2 users are equalized. The allowable overload of this scheme is investigated in the uplink on an AWGN and Rayleigh fading channels, so that the uncoded performance with iterative multistage interference cancellation detector remains close to the single user bound. It is shown that this scheme provides 19% and 11% overloading with SDIC technique for N= 16 and 64 respectively, with an SNR degradation of less than 0.35 dB as compared to single user bound at a BER of 0.00001. But on a Rayleigh fading channel, the channel overloading is 45% (29 extra users) at a BER of 0.0005, with an SNR degradation of about 1 dB as compared to single user performance for N=64. This is a significant amount of channel overloading on a Rayleigh fading channel.

Capacity of Overloaded DS-CDMA System on Rayleigh Fading Channel with Timing Error

The number of users supported in a DS-CDMA cellular system is typically less than spreading factor (N), and the system is said to be underloaded. Overloading is a technique to accommodate more number of users than the spreading factor N. In O/O overloading scheme, the first set is assigned to the N synchronous users and the second set is assigned to the additional synchronous users. An iterative multistage soft decision interference cancellation (SDIC) receiver is used to remove high level of interference between the two sets. Performance is evaluated in terms of the maximum number acceptable users so that the system performance is degraded slightly compared to the single user performance at a specified BER. In this paper, the capacity of CDMA based O/O overloading scheme is evaluated with SDIC receiver. It is observed that O/O scheme using orthogonal Gold codes provides 25% channel overloading (N=64) for synchronous DS-CDMA system on an AWGN channel in the uplink at a BER of 1e-5.For a Rayleigh faded channel, the critical capacity is 40% at a BER of 5e-5 assuming synchronous users. But in practical systems, perfect chip timing is very difficult to maintain in the uplink.. We have shown that the overloading performance reduces to 11% for a timing synchronization error of 0.02Tc for a BER of 1e-5.

On Pseudo-Random and Orthogonal Binary Spreading Sequences

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

System Performance Comparison of Turbo and Trellis Coded Optical CDMA Systems

In this paper, we have compared the performance of a Turbo and Trellis coded optical code division multiple access (OCDMA) system. The comparison of the two codes has been accomplished by employing optical orthogonal codes (OOCs). The Bit Error Rate (BER) performances have been compared by varying the code weights of address codes employed by the system. We have considered the effects of optical multiple access interference (OMAI), thermal noise and avalanche photodiode (APD) detector noise. Analysis has been carried out for the system with and without double optical hard limiter (DHL). From the simulation results it is observed that a better and distinct comparison can be drawn between the performance of Trellis and Turbo coded systems, at lower code weights of optical orthogonal codes for a fixed number of users. The BER performance of the Turbo coded system is found to be better than the Trellis coded system for all code weights that have been considered for the simulation. Nevertheless, the Trellis coded OCDMA system is found to be better than the uncoded OCDMA system. Trellis coded OCDMA can be used in systems where decoding time has to be kept low, bandwidth is limited and high reliability is not a crucial factor as in local area networks. Also the system hardware is less complex in comparison to the Turbo coded system. Trellis coded OCDMA system can be used without significant modification of the existing chipsets. Turbo-coded OCDMA can however be employed in systems where high reliability is needed and bandwidth is not a limiting factor.

Analysis of MAC Protocols with Correlation Receiver for OCDMA Networks - Part II

In this paper optical code-division multiple-access (OCDMA) packet network is considered, which offers inherent security in the access networks. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and two-dimensional (2-D) wavelength/time single-pulse-per-row (W/T SPR) codes are analyzed. The main advantage of using 2-D codes instead of onedimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.