Learning Human-Like Color Categorization through Interaction

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Bullies and Their Mothers: Who Influence Whom?

Even though most researchers would agree that in symbiotic relationships, like the one between parent and child, influences become reciprocal over time, empirical evidence supporting this claim is limited. The aim of the current study was to develop and test a model describing the reciprocal influence between characteristics of the parent-child relationship, such as closeness and conflict, and the child-s bullying and victimization experiences at school. The study used data from the longitudinal Study of Early Child-Care, conducted by the National Institute of Child Health and Human Development. The participants were dyads of early adolescents (5th and 6th graders during the two data collection waves) and their mothers (N=1364). Supporting our hypothesis, the findings suggested a reciprocal association between bullying and positive parenting, although this association was only significant for boys. Victimization and positive parenting were not significantly interrelated.

Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.

Compact Model of Dual-Drain MAGFETs Simulation

This work offers a study of new simple compact model of dual-drain Magnetic Field Effect Transistor (MAGFET) including geometrical effects and biasing dependency. An explanation of the sensitivity is investigated, involving carrier deflection as the dominant operating principle. Finally, model verification with simulation results is introduced to ensure that acceptable error of 2% is achieved.

Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging

Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.

Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems

Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.

A Novel 14 nm Extended Body FinFET for Reduced Corner Effect, Self-Heating Effect, and Increased Drain Current

In this paper, we have proposed a novel FinFET with extended body under the poly gate, which is called EB-FinFET, and its characteristic is demonstrated by using three-dimensional (3-D) numerical simulation. We have analyzed and compared it with conventional FinFET. The extended body height dependence on the drain induced barrier lowering (DIBL) and subthreshold swing (S.S) have been also investigated. According to the 3-D numerical simulation, the proposed structure has a firm structure, an acceptable short channel effect (SCE), a reduced series resistance, an increased on state drain current (I on) and a large normalized I DS. Furthermore, the structure can also improve corner effect and reduce self-heating effect due to the extended body. Our results show that the EBFinFET is excellent for nanoscale device.

3G WCDMA Mobile Network DoS Attack and Detection Technology

Currently, there has been a 3G mobile networks data traffic explosion due to the large increase in the number of smartphone users. Unlike a traditional wired infrastructure, 3G mobile networks have limited wireless resources and signaling procedures for complex wireless resource management. And mobile network security for various abnormal and malicious traffic technologies was not ready. So Malicious or potentially malicious traffic originating from mobile malware infected smart devices can cause serious problems to the 3G mobile networks, such as DoS and scanning attack in wired networks. This paper describes the DoS security threat in the 3G mobile network and proposes a detection technology.

Extracting Human Body based on Background Estimation in Modified HLS Color Space

The ability to recognize humans and their activities by computer vision is a very important task, with many potential application. Study of human motion analysis is related to several research areas of computer vision such as the motion capture, detection, tracking and segmentation of people. In this paper, we describe a segmentation method for extracting human body contour in modified HLS color space. To estimate a background, the modified HLS color space is proposed, and the background features are estimated by using the HLS color components. Here, the large amount of human dataset, which was collected from DV cameras, is pre-processed. The human body and its contour is successfully extracted from the image sequences.

A Traffic Simulation Package Based on Travel Demand

In this paper we propose a new traffic simulation package, TDMSim, which supports both macroscopic and microscopic simulation on free-flowing and regulated traffic systems. Both simulators are based on travel demands, which specify the numbers of vehicles departing from origins to arrive at different destinations. The microscopic simulator implements the carfollowing model given the pre-defined routes of the vehicles but also supports the rerouting of vehicles. We also propose a macroscopic simulator which is built in integration with the microscopic simulator to allow the simulation to be scaled for larger networks without sacrificing the precision achievable through the microscopic simulator. The macroscopic simulator also enables the reuse of previous simulation results when simulating traffic on the same networks at later time. Validations have been conducted to show the correctness of both simulators.

Stochastic Estimation of Cavity Flowfield

Linear stochastic estimation and quadratic stochastic estimation techniques were applied to estimate the entire velocity flow-field of an open cavity with a length to depth ratio of 2. The estimations were done through the use of instantaneous velocity magnitude as estimators. These measurements were obtained by Particle Image Velocimetry. The predicted flow was compared against the original flow-field in terms of the Reynolds stresses and turbulent kinetic energy. Quadratic stochastic estimation proved to be more superior than linear stochastic estimation in resolving the shear layer flow. When the velocity fluctuations were scaled up in the quadratic estimate, both the time-averaged quantities and the instantaneous cavity flow can be predicted to a rather accurate extent.

Evaluation of Sensitometric Properties of Radiographic Films at Different Processing Solutions

The aim of this study was to compare the sensitometric properties of commonly used radiographic films processed with chemical solutions in different workload hospitals. The effect of different processing conditions on induced densities on radiologic films was investigated. Two accessible double emulsions Fuji and Kodak films were exposed with 11-step wedge and processed with Champion and CPAC processing solutions. The mentioned films provided in both workloads centers, high and low. Our findings displays that the speed and contrast of Kodak filmscreen in both work load (high and low) is higher than Fuji filmscreen for both processing solutions. However there was significant differences in films contrast for both workloads when CPAC solution had been used (p=0.000 and 0.028). The results showed base plus fog density for Kodak film was lower than Fuji. Generally Champion processing solution caused more speed and contrast for investigated films in different conditions and there was significant differences in 95% confidence level between two used processing solutions (p=0.01). Low base plus fog density for Kodak films provide more visibility and accuracy and higher contrast results in using lower exposure factors to obtain better quality in resulting radiographs. In this study we found an economic advantages since Champion solution and Kodak film are used while it makes lower patient dose. Thus, in a radiologic facility any change in film processor/processing cycle or chemistry should be carefully investigated before radiological procedures of patients are acquired.

Development of a Spark Electrode Ignition System for an Explosion Vessel

This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.

Analysis of Long-Term File System Activities on Cluster Systems

I/O workload is a critical and important factor to analyze I/O pattern and to maximize file system performance. However to measure I/O workload on running distributed parallel file system is non-trivial due to collection overhead and large volume of data. In this paper, we measured and analyzed file system activities on two large-scale cluster systems which had TFlops level high performance computation resources. By comparing file system activities of 2009 with those of 2006, we analyzed the change of I/O workloads by the development of system performance and high-speed network technology.

Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished results). In batch production, about 95% of Z-Ala-Phe-NH2 was obtained at 30°C after 24 hours of incubation. Reproducibility of different batches of commercial Alcalase 2.4 L FG preparations was also investigated by evaluating the amidation activity and the entrapment yields in the case of immobilization. A packed-bed reactor (0.68 cm ID, 15.0 cm long) was operated successfully for the continuous synthesis of peptide amides. The immobilized enzyme retained the initial activity over 10 cycles of repeated use in continuous reactor at ambient temperature. At 0.75 mL/min flow rate of the substrate mixture, the total conversion of Z-Ala-Phe-OMe was achieved after 5 hours of substrate recycling. The product contained about 90% peptide amide and 10% hydrolysis byproduct.

Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation

In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.

Rational Structure of Panel with Curved Plywood Ribs

Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

Business Scenarios Assessment in Healthcare and Education for 21st Century Networks in Asia Pacific

Business scenario is an important technique that may be used at various stages of the enterprise architecture to derive its characteristics based on the high-level requirements of the business. In terms of wireless deployments, they are used to help identify and understand business needs involving wireless services, and thereby to derive the business requirements that the architecture development has to address by taking into account of various wireless challenges. This study assesses the deployment of Wireless Local Area Network (WLAN) and Broadband Wireless Access (BWA) solutions for several business scenarios in Asia Pacific region. This paper focuses on the overview of the business and technology environments, whereby examples of existing (or suggested) wireless solutions (to be) adopted in Asia Pacific region will be discussed. Interactions of several players, enabling technologies, and key processes in the wireless environments are studied. The analysis and discussions associated to this study are divided into two divisions: healthcare and education, where the merits of wireless solutions in improving living quality are highlighted.