Denoising and Compression in Wavelet Domainvia Projection on to Approximation Coefficients

We describe a new filtering approach in the wavelet domain for image denoising and compression, based on the projections of details subbands coefficients (resultants of the splitting procedure, typical in wavelet domain) onto the approximation subband coefficients (much less noisy). The new algorithm is called Projection Onto Approximation Coefficients (POAC). As a result of this approach, only the approximation subband coefficients and three scalars are stored and/or transmitted to the channel. Besides, with the elimination of the details subbands coefficients, we obtain a bigger compression rate. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.

Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Reduce the Complexity of Material Requirement Planning on Excel by an Algorithm

Many companies have excel, it is economy and well perform to use in material requirement planning (MRP) on excel. For several products, it, however, is complex problem to link the relationship between the tables of products because the relationship depends on bill of material (BOM). This paper presents algorithm to create MRP on excel, and links relationship between tables. The study reveals MRP that is created by the algorithm which is easier and faster than MRP that created by human. By this technique, MRP on excel might be good ways to improve a productivity of companies.

Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Ultra Fast Solid State Ground Fault Isolator

Personnel protection devices are cardinal in safety hazard applications. They are widely used in home, office and in industry environments to reduce the risk of lethal shock to human being and equipment safety. This paper briefly reviews various personnel protection devices also describes the basic working principle of conventional ground fault circuit interrupter (GFCI) or ground fault isolator (GFI), its disadvantages and ways to overcome the disadvantages with solid-state relay (SSR) based GFI with ultrafast response up on fault implemented in printed circuit board. This solid state GFI comprises discrete MOSFET based alternating current (AC) switches, linear optical amplifier, photovoltaic isolator and sense resistor. In conventional GFI, current transformer is employed as a sensing element to detect the difference in current flow between live and neutral conductor. If there is no fault in equipment powered through GFI, due to insulation failure of internal wires and windings of motors, both live and neutral currents will be equal in magnitude and opposite in phase.

Combined DWT-CT Blind Digital Image Watermarking Algorithm

In this paper, we propose a new robust and secure system that is based on the combination between two different transforms Discrete wavelet Transform (DWT) and Contourlet Transform (CT). The combined transforms will compensate the drawback of using each transform separately. The proposed algorithm has been designed, implemented and tested successfully. The experimental results showed that selecting the best sub-band for embedding from both transforms will improve the imperceptibility and robustness of the new combined algorithm. The evaluated imperceptibility of the combined DWT-CT algorithm which gave a PSNR value 88.11 and the combination DWT-CT algorithm improves robustness since it produced better robust against Gaussian noise attack. In addition to that, the implemented system shored a successful extraction method to extract watermark efficiently.

Contact Stress Analysis of Spur Gear Teeth Pair

Contact stress analysis between two spur gear teeth was considered in different contact positions, representing a pair of mating gears during rotation. A programme has been developed to plot a pair of teeth in contact. This programme was run for each 3° of pinion rotation from the first location of contact to the last location of contact to produce 10 cases. Each case was represented a sequence position of contact between these two teeth. The programme gives graphic results for the profiles of these teeth in each position and location of contact during rotation. Finite element models were made for these cases and stress analysis was done. The results were presented and finite element analysis results were compared with theoretical calculations, wherever available.

Learning and Teaching in the Panopticon:Ethical and Social Issues in Creating a Virtual Educational Environment

This paper examines ethical and social issues which have proved important when initiating and creating educational spaces within a virtual environment. It focuses on one project, identifying the key decisions made, the barriers to new practice encountered and the impact these had on the project. It demonstrates the importance of the 'backstage' ethical and social issues involved in the creation of a virtual education community and offers conclusions, and questions, which will inform future research and practice in this area. These ethical issues are considered using Knobel-s framework of front-end, in-process and back-end concerns, and include establishing social practices for the islands, allocating access rights, considering personal safety and supporting researchers appropriately within this context.

A Design Framework for Event Recommendation in Novice Low-Literacy Communities

The proliferation of user-generated content (UGC) results in huge opportunities to explore event patterns. However, existing event recommendation systems primarily focus on advanced information technology users. Little work has been done to address novice and low-literacy users. The next billion users providing and consuming UGC are likely to include communities from developing countries who are ready to use affordable technologies for subsistence goals. Therefore, we propose a design framework for providing event recommendations to address the needs of such users. Grounded in information integration theory (IIT), our framework advocates that effective event recommendation is supported by systems capable of (1) reliable information gathering through structured user input, (2) accurate sense making through spatial-temporal analytics, and (3) intuitive information dissemination through interactive visualization techniques. A mobile pest management application is developed as an instantiation of the design framework. Our preliminary study suggests a set of design principles for novice and low-literacy users.

Making Ends Meet: The Challenges of Investing in and Accounting for Sustainability

The transition to sustainable development requires considerable investments from stakeholders, both financial and immaterial. However, accounting for such investments often poses a challenge, as ventures with intangible or non-financial returns remain oblivious to conventional accounting techniques and risk assessment. That such investments may significantly contribute to the welfare of those affected may act as a driving force behind attempting to bridge this gap. This gains crucial importance as investments must be also backed by governments and administrations; entities whose budget depends on taxpayers- contributions and whose tasks are based on securing the welfare of their citizens. Besides economic welfare, citizens also require social and environmental wellbeing too. However, administrations must also safeguard that welfare is guaranteed not only to present, but to future generations too. With already strained budgets and the requirement of sustainable development, governments on all levels face the double challenge of making both of these ends meet.

Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters

This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.

CFD Simulation of Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL Technology

In this paper 2D Simulation of catalytic Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL technology has been performed utilizing computational fluid dynamics (CFD). Synthesis gas (a mixture of carbon monoxide and hydrogen) has been used as feedstock. The reactor was modeled and the model equations were solved employing finite volume method. The model was validated against the experimental data reported in literature. The comparison showed a good agreement between simulation results and the experimental data. In addition, the model was applied to predict the concentration contours of the reactants and products along the length of reactor.

BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Goal Based Episodic Processing in Implicit Learning

Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.

Experimental and CFD Investigation of Nozzle Angle in Jet Mixer

In this work, the results of mixing study by a jet mixer in a tank have been investigated in the laboratory scale. The tank dimensions are H/D=1 and the jet entrance have been considered in the center of upper surface of tank. RNG-k-ε model is used as the turbulent model for the prediction of the pattern of turbulent flow inside the tank. For this purpose, a tank with volume of 110 liter is simulated and it has been divided into 410,000 tetrahedral control cells for performing the calculations. The grids at the vicinity of the nozzle and suction pare are finer to get more accurate results. The experimental results showed that in a vertical jet, the lowest mixing time takes place at 35 degree. In addition, mixing time decreased by increasing the Reynolds number. Furthermore, the CFD simulation predicted the items as well a flow patterns precisely that validates the experiments.

Influence of Cavity Length on Forward-facing Cavity and Opposing Jet Combined Thermal Protection System Cooling Efficiency

A numerical study on the influence of forward-facing cavity length upon forward-facing cavity and opposing jet combined thermal protection system (TPS) cooling efficiency under hypersonic flow is conducted, by means of which the flow field parameters, heat flux distribution along the outer body surface are obtained. The numerical simulation results are validated by experiments and the cooling effect of the combined TPS with different cavity length is analyzed. The numerical results show that the combined configuration dose well in cooling the nose of the hypersonic vehicle. The deeper the cavity is, the weaker the heat flux is. The recirculation region plays a key role for the reduction of the aerodynamic heating.

A Foresight into Green Housing Industry in Malaysia

Bringing change to the housing industry requires multiple efforts from various angles especially to overcome any resistances in the form of technology, human aspects, financial and resources. The transition from conventional to sustainable approach consumes time as it requires changes from different facets in the industry ranging from individual, organisational to industry level. In Malaysia, there are various efforts to bring green into the industry but the progress is low-moderate. Will the current efforts bear larger fruits in the near future? This study examines the perceptions of the developers in Malaysia on the future of the green housing sector for the next 5 years. The introduction of GBI rating system, improvement of awareness and knowledge among the stakeholders, support from the government and local industry and the effect of competitive advantage would support brighter future. Meanwhile, the status quo in rules and regulation, lack of public interest and demand, organization disinterest, local authority enforcement and project cost escalation would hinder a faster progress.

Advanced Travel Information System in Heterogeneous Networks

In order to achieve better road utilization and traffic efficiency, there is an urgent need for a travel information delivery mechanism to assist the drivers in making better decisions in the emerging intelligent transportation system applications. In this paper, we propose a relayed multicast scheme under heterogeneous networks for this purpose. In the proposed system, travel information consisting of summarized traffic conditions, important events, real-time traffic videos, and local information service contents is formed into layers and multicasted through an integration of WiMAX infrastructure and Vehicular Ad hoc Networks (VANET). By the support of adaptive modulation and coding in WiMAX, the radio resources can be optimally allocated when performing multicast so as to dynamically adjust the number of data layers received by the users. In addition to multicast supported by WiMAX, a knowledge propagation and information relay scheme by VANET is designed. The experimental results validate the feasibility and effectiveness of the proposed scheme.

Study the Influence of Chemical Treatment on the Compositional Changes and Defect Structures of ZnS Thin Film

The effect of chemical treatment in CdCl2 on the compositional changes and defect structures of potentially useful ZnS solar cell thin films prepared by vacuum deposition method was studied using the complementary Rutherford backscattering (RBS) and Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various as deposited samples studied. After treatment, perturbation on the intensity is noted; mobile defect states and charge conversion and/or transfer between defect states are found.

Intact and ACL-Deficient Knee MODEL Evaluation

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.