Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different from those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel, along with the associated edge stiffeners, subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in a parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, both the plate slenderness and the aspect ratio influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh

Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40%, and 50% by volume) of clay on properties of bricks was studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.

A Study of Standing-Wave Thermoacoustic Refrigerator

Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance, than the stack length and operating frequency, respectively. The temperature difference across the ends of stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature.

Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity, and the required nozzle pressure is presented.

Down-Regulated Gene Expression of GKN1 and GKN2 as Diagnostic Markers for Gastric Cancer

Gastric Cancer (GC) has high morbidity and fatality rate in various countries. It is still one of the most frequent and deadly diseases. Gastrokine1 (GKN1) and gastrokine2 (GKN2) genes are highly expressed in the normal stomach epithelium and play important roles in maintaining the integrity and homeostasis of stomach mucosal epithelial cells. In this study, 47 paired samples that were grouped according to the types of gastric cancer and the clinical characteristics of the patients, including gender and average of age. They were investigated with gene expression analysis and mutation screening by monitoring RT-PCR, SSCP and nucleotide sequencing techniques. Both GKN1 and GKN2 genes were observed significantly reduced found by (Wilcoxon signed rank test; p

Tom Stoppard: The Amorality of the Artist

To maintain a healthy balanced loyalty, whether to art or society, posits a debatable issue. The artist is always on the look out for the potential tension between those two realms. Therefore, one of the most painful dilemmas the artist finds is how to function in a society without sacrificing the aesthetic values of his/her work. In other words, the life-long awareness of failure which derives from the concept of the artist as caught between unflattering social realities and the need to invent genuine art forms becomes a fertilizing soil for the artists to be tackled. Thus, within the framework of this dilemma, the question of the responsibility of the artist and the relationship of the art to politics will be illuminating. To a larger extent, however, in drama, this dilemma is represented by the fictional characters of the play. The present paper tackles the idea of the amorality of the artist in selected plays by Tom Stoppard. However, Stoppard’s awareness of his situation as a refugee has led him to keep at a distance from politics. He tried hard to avoid any intervention into the realms of political debate, especially in his earliest work. On the one hand, it is not meant that he did not interest in politics as such, but rather he preferred to question it than to create a fixed ideological position. On the other hand, Stoppard’s refusal to intervene in politics is ascribed to his feeling of gratitude to Britain where he settled. As a result, Stoppard has frequently been criticized for a lack of political engagement and also for not leaning too much for the left when he does engage. His reaction to these public criticisms finds expression in his self-conscious statements which defensively stressed the artifice of his work. He, like Oscar Wilde thinks that the responsibility of the artist is devoted to the realm of his/her art. Consequently, his consciousness for the role of the artist is truly reflected in his two plays, Artist Descending a Staircase (1972) and Travesties (1974).

Production of Energetic Nanomaterials by Spray Flash Evaporation

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Freedom of Expression and Its Restriction in Audio Visual Media

Audio visual communication is a type of collective expression. Due to inform the masses, give direction to opinions, and establish public opinion, audio visual communication must be subjected to special restrictions. This has been stipulated in both the Constitution and the European Human Rights Agreement. This paper aims to review freedom of expression and its restriction in audio visual media. For this purpose, the authorization of the Radio and Television Supreme Council to impose sanctions as an independent administrative authority empowered to regulate the field of audio visual communication has been reviewed with regard to freedom of expression and its limits.

Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Well-Being of Lagos Urban Mini-Bus Drivers: The Influence of Age and Marital Status

Lagos urban mini bus drivers play a critical role in the transportation sector. The current major mode of transportation within Lagos metropolis remains road transportation and this confirms the relevance of urban mini-bus drivers in transporting the populace to their various destinations. Other modes of transportation such as the train and waterways are currently inadequate. Various threats to the well-being of urban bus drivers include congested traffic typical of modern day lifestyles, dwindling financial returns due to long hours in traffic, fewer hours of sleep, inadequate diet, time pressure, and assaults related to fare disputes. Several healthrelated problems have been documented to be associated with urban bus driving. For instance, greater rates of hypertension, obesity and cholesterol level have been reported. Research studies are yet to identify the influence of age and marital status on the well-being of urban mini-bus drivers in Lagos metropolis. A study of this nature is necessary as it is culturally perceived in Nigeria that older and married people are especially influenced by family affiliation and would behave in ways that would project positive outcomes. The study sample consisted of 150 urban mini-bus drivers who were conveniently sampled from six (6) different terminuses where their journey begins and terminates. The well-being questionnaire was administered to participants. The criteria for inclusion in the study included the ability to read in English language and the confirmation that interested participants were on duty and suited to be driving mini-buses. Due to the nature of the job of bus driving, the researcher administered the questionnaires on participants who were free and willing to respond to the survey. All participants were males of various age groups and of different marital statuses. Results of analyses conducted revealed no significant influence of age and marital status on the well-being of urban mini-bus drivers. This indicates that the well-being of urban mini bus drivers is not influenced by age or marital status. The findings of this study have cultural implications. It negates the popularly held belief that older and married people care more about their well-being than younger and single people. It brings to fore the need to also identify and consider other factors when certifying people for the job of urban bus driving.

Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Valorization and Conservation of Rock Paintings and Engravings of Kabylia Region, Algeria

In Algeria, the most impressive and most known prehistoric art is the painted or engraved rock art which is present with abundance in several regions. The existence of rock art in Great Kabylia region has been known for over sixty years. The main purpose of this research is to show the dangers facing these rock paintings and engravings and what are the arrangements for their protection and recovery. As every vestige destroyed is a part of the world's memory which disappears, some steps have to be taken in order to protect these historical and archaeological heritages.

Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments were carried out in this paper. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt

Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study, the Local Alkaline Activator in Egypt and crashed stone as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa.

Subjective Versus Objective Assessment for Magnetic Resonance Images

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Assessment of the Impact of Regular Pilates Exercises on Static Balance in Healthy Adult Women: Preliminary Report

Background: Maintaining the correct body balance is essential in the prevention of falls in the elderly, which is especially important for women because of postmenopausal osteoporosis and the serious consequences of falls. One of the exercise methods which is very popular among adults, and which may affect body balance in the positive way is the Pilates method. The aim of the study was to evaluate the effect of regular Pilates exercises on the ability to maintain body balance in static conditions in adult healthy women. Material and methods: The study group consisted of 20 healthy women attending Pilates twice a week for at least 1 year. The control group consisted of 20 healthy women physically inactive. Women in the age range from 35 to 50 years old without pain in musculoskeletal system or other pain were only qualified to the groups. Body balance was assessed using MatScan VersaTek platform with Sway Analysis Module based on Matscan Clinical 6.7 software (Tekscan Inc., U.S.A). The balance was evaluated under the following conditions: standing on both feet with eyes open, standing on both feet with eyes closed, one-leg standing (separately on the right and left foot) with eyes open. Each test lasted 30 seconds. The following parameters were calculated: estimated size of the ellipse of 95% confidence, the distance covered by the Center of Gravity (COG), the size of the maximum shift in the sagittal and frontal planes and load distribution between the left and right foot, as well as between rear- and forefoot. Results: It was found that there is significant difference between the groups in favor of the study group in the size of the confidence ellipse and maximum shifts of COG in the sagittal plane during standing on both feet, both with the eyes open and closed (p

Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Determination of the Pullout/Holding Strength at the Taper-Trunnion Junction of Hip Implants

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the tapertrunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding

In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.