Abstract: Lithium niobate (LiNbO3) nanostructures are prepared on quartz substrate by the sol-gel method. They have been deposited with different molarity concentration and annealed at 500°C. These samples are characterized and analyzed by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). The measured results showed an importance increasing in molarity concentrations that indicate the structure starts to become crystal, regular, homogeneous, well crystal distributed, which made it more suitable for optical waveguide application.
Abstract: Green concrete are generally composed of recycling
materials as hundred or partial percent substitutes for aggregate,
cement, and admixture in concrete. To reduce greenhouse gas
emissions, efforts are needed to develop environmentally friendly
construction materials. Using of fly ash based geopolymer as an
alternative binder can help reduce CO2 emission of concrete. The
binder of geopolymer concrete is different from the ordinary Portland
cement concrete. Geopolymer Concrete specimens were prepared
with different concentration of NaOH solution M10, M14, and, M16
and cured at 60ºC in duration of 24 hours and 8 hours, in addition to
the curing in direct sunlight. Thus, it is necessary to study the effects
of the geopolymer binder on the behavior of concrete. Concrete is
made by using geopolymer technology is environmental friendly and
could be considered as part of the sustainable development. In this
study, the Local Alkaline Activator in Egypt and crashed stone as
coarse aggregate in fly ash based-geopolymer concrete was
investigated. This paper illustrates the development of mechanical
properties. Since the gained compressive strength for geopolymer
concrete at 28 days was in the range of 22.5MPa – 43.9MPa.
Abstract: Local steel slag is produced as a by-product during the
oxidation of steel pellets in an electric arc furnace. Using local steel
slag waste as a hundred substitutes of crashed stone in construction
materials would resolve the environmental problems caused by the
large-scale depletion of the natural sources of crashed stone. This
paper reports the experimental study to investigate the influence of a
hundred replacement of crashed stone as a coarse aggregate with
local steel slag, on the fresh and hardened geopolymer concrete
properties. The investigation includes traditional testing of hardening
concrete, for selected mixes of cement and geopolymer concrete. It
was found that local steel slag as a coarse aggregate enhanced the
slump test of the fresh state of cement and geopolymer concretes.
Nevertheless, the unit weight of concretes was affected. Meanwhile,
the good performance was observed when fly ash used as geopolymer
concrete based.
Abstract: The primary objective of this work was to study the
effect of resin chemistry, pH and molarity of binding and elution
buffer on aggregate removal using Cation Exchange Chromatography
and find the optimum conditions which can give efficient aggregate
removal with minimum loss of yield. Four different resins were used
for carrying out the experiments: Fractogel EMD SO3
-(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs
were carried out on the AKTA Avant system. Design of Experiments
(DOE) was used for analysis using the JMP software. The
dependence of the yield obtained using different resins on the
operating conditions was studied. Success has been achieved in
obtaining yield greater than 90% using Capto SP ImpRes and
Fractogel EMD COO-(M) resins. It has also been found that a change
in the operating conditions generally has different effects on the
yields obtained using different resins.
Abstract: This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.
Abstract: Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.
Abstract: To evaluate genetic variation of wheat (Triticum aestivum) affected by heat and drought stress on eight Australian wheat genotypes that are parents of Doubled Haploid (HD) mapping populations at the vegetative stage, the water stress experiment was conducted at 65% field capacity in growth room. Heat stress experiment was conducted in the research field under irrigation over summer. Result show that water stress decreased dry shoot weight and RWC but increased osmolarity and means of Fv/Fm values in all varieties except for Krichauff. Krichauff and Kukri had the maximum RWC under drought stress. Trident variety was shown maximum WUE, osmolarity (610 mM/Kg), dry mater, quantum yield and Fv/Fm 0.815 under water stress condition. However, the recovery of quantum yield was apparent between 4 to 7 days after stress in all varieties. Nevertheless, increase in water stress after that lead to strong decrease in quantum yield. There was a genetic variation for leaf pigments content among varieties under heat stress. Heat stress decreased significantly the total chlorophyll content that measured by SPAD. Krichauff had maximum value of Anthocyanin content (2.978 A/g FW), chlorophyll a+b (2.001 mg/g FW) and chlorophyll a (1.502 mg/g FW). Maximum value of chlorophyll b (0.515 mg/g FW) and Carotenoids (0.234 mg/g FW) content belonged to Kukri. The quantum yield of all varieties decreased significantly, when the weather temperature increased from 28 ÔùªC to 36 ÔùªC during the 6 days. However, the recovery of quantum yield was apparent after 8th day in all varieties. The maximum decrease and recovery in quantum yield was observed in Krichauff. Drought and heat tolerant and moderately tolerant wheat genotypes were included Trident, Krichauff, Kukri and RAC875. Molineux, Berkut and Excalibur were clustered into most sensitive and moderately sensitive genotypes. Finally, the results show that there was a significantly genetic variation among the eight varieties that were studied under heat and water stress.
Abstract: The research investigates the effects of super plasticizer and molarity of sodium hydroxide alkaline solution on the workability, microstructure and compressive strength of self compacting geopolymer concrete (SCGC). SCGC is an improved way of concreting execution that does not require compaction and is made by complete elimination of ordinary Portland cement content. The parameters studied were superplasticizer (SP) dosage and molarity of NaOH solution. SCGC were synthesized from low calcium fly ash, activated by combinations of sodium hydroxide and sodium silicate solutions, and by incorporation of superplasticizer for self compactability. The workability properties such as filling ability, passing ability and resistance to segregation were assessed using slump flow, T-50, V-funnel, L-Box and J-ring test methods. It was found that the essential workability requirements for self compactability according to EFNARC were satisfied. Results showed that the workability and compressive strength improved with the increase in superplasticizer dosage. An increase in strength and a decrease in workability of these concrete samples were observed with the increase in molarity of NaOH solution from 8M to 14M. Improvement of interfacial transition zone (ITZ) and micro structure with the increase of SP and increase of concentration from 8M to 12M were also identified.
Abstract: To evaluate genetic variation of wheat (Triticum
aestivum) affected by heat and drought stress on eight Australian
wheat genotypes that are parents of Doubled Haploid (HD) mapping
populations at the vegetative stage, the water stress experiment was
conducted at 65% field capacity in growth room. Heat stress
experiment was conducted in the research field under irrigation over
summer. Result show that water stress decreased dry shoot weight
and RWC but increased osmolarity and means of Fv/Fm values in all
varieties except for Krichauff. Krichauff and Kukri had the
maximum RWC under drought stress. Trident variety was shown
maximum WUE, osmolarity (610 mM/Kg), dry mater, quantum yield
and Fv/Fm 0.815 under water stress condition. However, the
recovery of quantum yield was apparent between 4 to 7 days after
stress in all varieties. Nevertheless, increase in water stress after that
lead to strong decrease in quantum yield. There was a genetic
variation for leaf pigments content among varieties under heat stress.
Heat stress decreased significantly the total chlorophyll content that
measured by SPAD. Krichauff had maximum value of Anthocyanin
content (2.978 A/g FW), chlorophyll a+b (2.001 mg/g FW) and
chlorophyll a (1.502 mg/g FW). Maximum value of chlorophyll b
(0.515 mg/g FW) and Carotenoids (0.234 mg/g FW) content
belonged to Kukri. The quantum yield of all varieties decreased
significantly, when the weather temperature increased from 28 ÔùªC to
36 ÔùªC during the 6 days. However, the recovery of quantum yield
was apparent after 8th day in all varieties. The maximum decrease
and recovery in quantum yield was observed in Krichauff. Drought
and heat tolerant and moderately tolerant wheat genotypes were
included Trident, Krichauff, Kukri and RAC875. Molineux, Berkut
and Excalibur were clustered into most sensitive and moderately
sensitive genotypes. Finally, the results show that there was a
significantly genetic variation among the eight varieties that were
studied under heat and water stress.