The Effect of Hydropriming and Halopriming on Germination and Early Growth Stage of Wheat (Triticum aestivum L.)

In order to study of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum) an experiment was carried out in laboratory of the Department of Agronomy and Plant breeding, Shahrood University of Technology. Seed treatments consisted of T1: control (untreated seeds), T2: soaking in distilled water for 18 h (hydropriming). T3: soaking in - 1.2 MPa solution of CaSO4 for 36 h (halopriming). Germination and early seedling growth were studied using distilled water (control) and under osmotic potentials of -0.4, -0.8 and -1.2 MPa for NaCl and polyethylene glycol (PEG 6000), respectively. Results showed that Hydroprimed seeds achieved maximum germination seedling dry weight, especially during the higher osmotic potentials. Minimum germination was recorded at untreated seeds (control) followed by osmopriming. Under high osmotic potentials, hydroprimed seeds had higher GI (germination index) as compared to haloprimed or untreated seeds. Interaction effect of seed treatment and osmotic potential significantly affected the seedling vigour index (SVI).

The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks

The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks.

FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.

Modeling and Analysis of the Effects of Nephrolithiasis in Kidney Using a Computational Tactile Sensing Approach

Having considered tactile sensing and palpation of a surgeon in order to detect kidney stone during open surgery; we present the 2D model of nephrolithiasis (two dimensional model of kidney containing a simulated stone). The effects of stone existence that appear on the surface of kidney (because of exerting mechanical load) are determined. Using Finite element method, it is illustrated that the created stress patterns on the surface of kidney and stress graphs not only show existence of stone inside kidney, but also show its exact location.

Control and Simulation of FOPDT Food Processes with Constraints using PI Controller

The most common type of controller being used in the industry is PI(D) controller which has been used since 1945 and is still being widely used due to its efficiency and simplicity. In most cases, the PI(D) controller was tuned without taking into consideration of the effect of actuator saturation. In real processes, the most common actuator which is valve will act as constraint and restrict the controller output. Since the controller is not designed to encounter saturation, the process may windup and consequently resulted in large oscillation or may become unstable. Usually, an antiwindup compensator is added to the feedback control loop to reduce the deterioration effect of integral windup. This research aims to specifically control processes with constraints. The proposed method was applied to two different types of food processes, which are blending and spray drying. Simulations were done using MATLAB and the performances of the proposed method were compared with other conventional methods. The proposed technique was able to control the processes and avoid saturation such that no anti windup compensator is needed.

Investigating Quality Metrics for Multimedia Traffic in OLSR Routing Protocol

An Ad hoc wireless network comprises of mobile terminals linked and communicating with each other sans the aid of traditional infrastructure. Optimized Link State Protocol (OLSR) is a proactive routing protocol, in which routes are discovered/updated continuously so that they are available when needed. Hello messages generated by a node seeks information about its neighbor and if the latter fails to respond to a specified number of hello messages regulated by neighborhood hold time, the node is forced to assume that the neighbor is not in range. This paper proposes to evaluate OLSR routing protocol in a random mobility network having various neighborhood hold time intervals. The throughput and delivery ratio are also evaluated to learn about its efficiency for multimedia loads.

A ZVS Flyback DC-DC Converter using Multilayered Coreless Printed-Circuit Board(PCB) Step-down Power Transformer

The experimental and theoretical results of a ZVS (Zero Voltage Switching) isolated flyback DC-DC converter using multilayered coreless PCB step down 2:1 transformer are presented. The performance characteristics of the transformer are shown which are useful for the parameters extraction. The measured energy efficiency of the transformer is found to be more than 94% with the sinusoidal input voltage excitation. The designed flyback converter has been tested successfully upto the output power level of 10W, with a switching frequency in the range of 2.7MHz-4.3MHz. The input voltage of the converter is varied from 25V-40V DC. Frequency modulation technique is employed by maintaining constant off time to regulate the output voltage of the converter. The energy efficiency of the isolated flyback converter circuit under ZVS condition in the MHz frequency region is found to be approximately in the range of 72-84%. This paper gives the comparative results in terms of the energy efficiency of the hard switched and soft switched flyback converter in the MHz frequency region.

Methodology of Realization for Supervisor and Simulator Dedicated to a Semiconductor Research and Production Factory

In the micro and nano-technology industry, the «clean-rooms» dedicated to manufacturing chip, are equipped with the most sophisticated equipment-tools. There use a large number of resources in according to strict specifications for an optimum working and result. The distribution of «utilities» to the production is assured by teams who use a supervision tool. The studies show the interest to control the various parameters of production or/and distribution, in real time, through a reliable and effective supervision tool. This document looks at a large part of the functions that the supervisor must assure, with complementary functionalities to help the diagnosis and simulation that prove very useful in our case where the supervised installations are complexed and in constant evolution.

Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

Preparation of Vanadium Powder by Hydrogenation and Dehydrogenation

Low oxygen content vanadium powder was prepared by hydrogenation dehydrogenization (HDH). The effect of purification treatment on hydrogen absorption kinetics of dendritic vanadium was tested, and the effects of milling technique on powder yield and grain size were studied. The crystal phase, oxygen and nitrgen content, and grain size of prepared powder were characterized and analyzed by X-ray diffraction (XRD), oxygen and nitrogen analyzer and grain size analyzer. The results show that the alkaline cleaning can improve the hydrogen absorption of vanadium. The yield of vanadium hydride powder can reach as high as 90% by 4h ball-milling, The resultant product also have an oxygen content less than 600μg/g, and the grain size is smaller than 37μm. Meanwhile, the XRD results show that the phase of hydride vanadium powder is mainly VH0.81. After a hydrogen desorption treatment in vacuum at 700Ôäâ, the phase of the powder converts into V and a little of V2H.

Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks

Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.

e-Learning Program with Voice Assistance for a Tactile Braille

Along with the increased morbidity of glaucoma or diabetic retinitis pigmentosa, etc., number of people with vision loss is also increasing in Japan. It is difficult for the visually impaired to learn and acquire braille because most of them are middle-aged. In addition, number of braille teachers are not sufficient and reducing in Japan, and this situation makes more difficult for the visually impaired. Therefore, we research and develop a Web-based e-learning program for tactile braille, that cooperate with braille display and voice assistance.

School Design and Energy Efficiency

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only need heating during the winter. The space hating energy is the major portion of winter school energy consumption and the winter energy consumption is major portion of annual school energy consumption. School building thermal design should focus on the winter thermal performance for reducing the space heating energy. A number of Auckland schools- design data and energy consumption data are used for this study. This pilot study investigates the relationships between their energy consumption data and school building design data to improve future school design for energy efficiency.

A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

3D Rendering of American Sign Language Finger-Spelling: A Comparative Study of Two Animation Techniques

In this paper we report a study aimed at determining the most effective animation technique for representing ASL (American Sign Language) finger-spelling. Specifically, in the study we compare two commonly used 3D computer animation methods (keyframe animation and motion capture) in order to ascertain which technique produces the most 'accurate', 'readable', and 'close to actual signing' (i.e. realistic) rendering of ASL finger-spelling. To accomplish this goal we have developed 20 animated clips of fingerspelled words and we have designed an experiment consisting of a web survey with rating questions. 71 subjects ages 19-45 participated in the study. Results showed that recognition of the words was correlated with the method used to animate the signs. In particular, keyframe technique produced the most accurate representation of the signs (i.e., participants were more likely to identify the words correctly in keyframed sequences rather than in motion captured ones). Further, findings showed that the animation method had an effect on the reported scores for readability and closeness to actual signing; the estimated marginal mean readability and closeness was greater for keyframed signs than for motion captured signs. To our knowledge, this is the first study aimed at measuring and comparing accuracy, readability and realism of ASL animations produced with different techniques.

A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance

Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.

RBF modeling of Incipient Motion of Plane Sand Bed Channels

To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.

Performance of a Transcritical CO2 Heat Pump for Simultaneous Water Cooling and Heating

This paper presents the experimental as well as the simulated performance studies on the transcritical CO2 heat pumps for simultaneous water cooling and heating; effects of water mass flow rates and water inlet temperatures of both evaporator and gas cooler on the cooling and heating capacities, system COP and water outlets temperatures are investigated. Study shows that both the water mass flow rate and inlet temperature have significant effect on system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases 0.6 for 1 kg/min) compared to the gas cooler water mass flow rate (COP increases 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases 0.48 for given ranges) compared to the evaporator water inlet temperature (COP increases 0.43 for given ranges). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity, 16% for system COP. This study offers useful guidelines for selecting appropriate water mass flow rate to obtain required system performance.

Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria

The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains from seawater sample, which are tolerant to organic solvents. Cell tolerance, adhesion and cells viability of Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 in the presence of organic solvents depends not only on its physicochemical properties and its concentration, but also on the specific response of the cells, and the cellular response is not the same for these bacterial strains. n-hexane, n-heptane, propylbenzene, with log POW between 3.69 and 4.39, were less toxic for Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3, compared with toluene, styrene, xylene isomers and ethylbenzene, with log POW between 2.64 and 3.17. The results indicated that Aeromonas salmonicida IBBCt2 is more susceptible to organic solvents than Pseudomonas aeruginosa IBBCt3. The mechanisms underlying solvent tolerance (e.g., the existance of the efflux pumps) in Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 it was also studied.