Frictionless Contact Problem Between Two Orthotropic Elastic Layers

A frictionless contact problem for a two-layer orthotropic elastic medium loaded through a rigid flat stamp is considered. It is assumed that tensile tractions are not allowed and only compressive tractions can be transmitted across the interface. In the solution, effect of gravity is taken into consideration. If the external load on the rigid stamp is less than or equal to a critical value, continuous contact between the layers is maintained. The problem is expressed in terms of a singular integral equation by using the theory of elasticity and the Fourier transforms. Numerical results for initial separation point, critical separation load and contact stress distribution are presented.

CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Heritability Estimates of Lactation Traits in Maltese Goat

Data on 657 lactation from 163 Maltese goat, collected over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered lactation traits were: milk yield (MY) and lactation length (LL). Year, parity and type of birth (single or twin) were significant sources of variation for lactation length; on the other hand milk yield was significantly influenced only by the year. The average MY was 352.34 kg and the average LL was 230 days. Estimates of heritability were 0.21 and 0.15 for MY and LL respectively. These values suggest there is low correlation between genotype and phenotype so it may be difficult to evaluate animals directly on phenotype. So, the genetic improvement of this breed may be quite slow without the support of progeny test aimed to select Maltese breeders.

Retail Inventory Management for Perishable Products with Two Bins Strategy

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

Interaction of Electroosmotic Flow on Isotachophoretic Transport of Ions

A numerical study on the influence of electroosmotic flow on analyte preconcentration by isotachophoresis ( ITP) is made. We consider that the double layer induced electroosmotic flow ( EOF) counterbalance the electrophoretic velocity and a stationary ITP stacked zones results. We solve the Navier-Stokes equations coupled with the Nernst-Planck equations to determine the local convective velocity and the preconcentration dynamics of ions. Our numerical algorithm is based on a finite volume method along with a secondorder upwind scheme. The present numerical algorithm can capture the the sharp boundaries of step-changes ( plateau mode) or zones of steep gradients ( peak mode) accurately. The convection of ions due to EOF reduces the resolution of the ITP transition zones and produces a dispersion in analyte zones. The role of the electrokinetic parameters which induces dispersion is analyzed. A one-dimensional model for the area-averaged concentrations based on the Taylor-Aristype effective diffusivity is found to be in good agreement with the computed solutions.

GPU Implementation for Solving in Compressible Two-Phase Flows

A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.

Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor

The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.

Green Lean TQM Human Resource Management Practices in Malaysian Automotive Companies

Green Lean Total Quality Management (LTQM) Human Resource Management (HRM) System is a system comprises of HRM in Environmental Management System (EMS) practices which is integrated to TQM with Lean Manufacturing (LM) principles. HRM is essential especially in dealing with low motivation and less productive employees. The ultimate goal of this system is to focus on achieving total human resource development that is motivated and capable to optimize their creativity to be a part of Green and Lean TQM organization. A survey questionnaire was developed and distributed to 30 highly active automotive vendors in Malaysia and analyzed by Minitab v16 and SPSS v17. It was found out companies that are practicing Green LTQM HRM practices have generated more revenue and have RND capability. However, years of company establishment do not affect the openness of the company to adapt new initiatives that can help to improve the effectiveness of the operations. It was also found out the importance of training, communication and rewards for employees. The Green LTQM HRM practices framework model established in this study hopefully will give preliminary insight especially to companies that are still looking for system that can improve their productivity from managing human resource. This is preliminary study that combined 4 awards practices, ISO/TS16949, Toyota Production System SAEJ4000, MAJAICO Lean Production System and EMS focusing on highly active companies that have been involved in MAJAICO Program and Proton Vendor Development Program. Future study can be conducted to know the status at other industry as well as case study pertaining to this system.

Electromyographic Activity of the Medial Gastrocnemius and Lateral Gastrocnemius Muscle during Salat-s and Specific Exercise

This paper investigates the activity of the gastrocnemius (Gas) muscle in healthy subjects during salat (ruku- position) and specific exercise [Unilateral Plantar Flexion Exercise (UPFE)] using electromyography (EMG). Both lateral and medial Gas muscles were assessed. A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG-s level. From the result, Wilcoxon-s Rank Sum test showed no significant difference between ruku- and UPFE for both medial (p=0.082) and lateral (p=0.226) of GAS muscles. Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities.

Analyzing the Fiscal Health of Local Governments in Taiwan: Evidence from Quantile Analysis

This paper develops the fiscal health index of 21 local governments in Taiwan over the 1984 to 2010 period. A quantile regression analysis was used to explore the extent that economic variables, political budget cycles, and legislative checks and balances, impact different quantiles of fiscal health index for a country over a sample period of time. Our findings suggest that local governments at the lower quantile are significantly benefited from political budget cycles and the increase in central government revenues, while legislative effective checks and balances and the increase in central government expenditures have a significantly negative effect on local fiscal health. When local governments are in the upper tail of the distribution, legislative checks and balances and growth in macroeconomics have significant and adverse effects on the fiscal health of local governments. However, increases in central government revenues have significant and positive effects on the health status of local government in Taiwan.

Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam

In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.

Chemical Analysis of PM2.5 during Dry Deforestation Season in Southeast Asia

In Southeast Asia, during the dry season (August to October) forest fires in Indonesia emit pollutants into the atmosphere. For two years during this period, a total of 67 samples of 2.5 μm particulate matters were collected and analyzed for total mass and elemental composition with ICP - MS after microwave digestion. A study of 60 elements measured during these periods suggest that the concentration of most of elements, even those usually related to crustal source, are extremely high and unpredictable during the haze period. In By contrast, trace element concentration in non - haze months is more stable and covers a lower range. Other unexpected events and their effects on the findings are discussed.

Determination of Cr Content in Canned Fish Marketed in Iran

The presence of heavy metals in the environment could constitute a hazard to food security and public health. These can be accumulated in aquatic animals such as fish. Samples of four popular brands of canned fish in the Iranian market (yellowfin tuna, common Kilka, Kawakawa and longtail tuna) were analyzed for level of Cr after wet digestion with acids using graphite furnace atomic absorption spectrophotometry. The mean concentrations for Cr in the different brands were: 2.57, 3.24, 3.16 and 1.65 μg/g for brands A, B, C and D respectively. Significant differences were observed in the Cr levels between all of the different brands of canned fish evaluated in this study. The Cr concentrations for the varieties of canned fishes were generally within the FAO/WHO, U.S. FDA and U.S. EPA recommended limits for fish.

Mathematical Modeling of Surface Roughness in Surface Grinding Operation

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Finite Element Prediction of Hip Fracture during a Sideways Fall

Finite element method was applied to model damage development in the femoral neck during a sideways fall. The femoral failure was simulated using the maximum principal strain criterion. The evolution of damage was consistent with previous studies. It was initiated by compressive failure at the junction of the superior aspect of the femoral neck and the greater trochanter. It was followed by tensile failure that occurred at the inferior aspect of the femoral neck before a complete transcervical fracture was observed. The estimated failure line was less than 50° from the horizontal plane (Pauwels type II).

Architecture Integrating Wireless Body Area Networks with Web Services for Ubiquitous Healthcare Service Provisioning

Recent advancements in sensor technologies and Wireless Body Area Networks (WBANs) have led to the development of cost-effective healthcare devices which can be used to monitor and analyse a person-s physiological parameters from remote locations. These advancements provides a unique opportunity to overcome current healthcare challenges of low quality service provisioning, lack of easy accessibility to service varieties, high costs of services and increasing population of the elderly experienced globally. This paper reports on a prototype implementation of an architecture that seamlessly integrates Wireless Body Area Network (WBAN) with Web services (WS) to proactively collect physiological data of remote patients to recommend diagnostic services. Technologies based upon WBAN and WS can provide ubiquitous accessibility to a variety of services by allowing distributed healthcare resources to be massively reused to provide cost-effective services without individuals physically moving to the locations of those resources. In addition, these technologies can reduce costs of healthcare services by allowing individuals to access services to support their healthcare. The prototype uses WBAN body sensors implemented on arduino fio platforms to be worn by the patient and an android smart phone as a personal server. The physiological data are collected and uploaded through GPRS/internet to the Medical Health Server (MHS) to be analysed. The prototype monitors the activities, location and physiological parameters such as SpO2 and Heart Rate of the elderly and patients in rehabilitation. Medical practitioners would have real time access to the uploaded information through a web application.

Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.

Energy Consumption Analysis of Design Patterns

The importance of low power consumption is widely acknowledged due to the increasing use of portable devices, which require minimizing the consumption of energy. Energy dissipation is heavily dependent on the software used in the system. Applying design patterns in object-oriented designs is a common practice nowadays. In this paper we analyze six design patterns and explore the effect of them on energy consumption and performance.

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.

Recognition of Obstacles and Providing Different Guidelines and Promotion of Electronic Government in Iran

Electronic Government is one of the special concepts which has been performed successfully within recent decades. Electronic government is a digital, wall-free government with a virtual organization for presenting of online governmental services and further cooperation in different political/social activities. In order to have a successful implementation of electronic government strategy and benefiting from its complete potential and benefits and generally for establishment and applying of electronic government, it is necessary to have different infrastructures as the basics of electronic government with lack of which it is impossible to benefit from mentioned services. For this purpose, in this paper we have managed to recognize relevant obstacles for establishment of electronic government in Iran. All required data for recognition of obstacles were collected from statistical society of involved specialists of Ministry of Communications & Information Technology of Iran and Information Technology Organization of Tehran Municipality through questionnaire. Then by considering of five-point Likert scope and μ =3 as the index of relevant factors of proposed model, we could specify current obstacles against electronic government in Iran along with some guidelines and proposal in this regard. According to the results, mentioned obstacles for applying of electronic government in Iran are as follows: Technical & technological problems, Legal, judicial & safety problems, Economic problems and Humanistic Problems.