Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm

This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.

Layout Based Spam Filtering

Due to the constant increase in the volume of information available to applications in fields varying from medical diagnosis to web search engines, accurate support of similarity becomes an important task. This is also the case of spam filtering techniques where the similarities between the known and incoming messages are the fundaments of making the spam/not spam decision. We present a novel approach to filtering based solely on layout, whose goal is not only to correctly identify spam, but also warn about major emerging threats. We propose a mathematical formulation of the email message layout and based on it we elaborate an algorithm to separate different types of emails and find the new, numerically relevant spam types.

Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm

The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.

Capacity of Anchors in Structural Connections

When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connections

Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Women Entrepreneurship and Problems in Turkey

Together with the industrialization, women began to be included in business life by peeling off of the tasks given them by society and they have become a factor of production creating value in economic and social sense. Thus, women have taken place in the labor market, majority of which has been formed by men. In this study, the experiences of women entrepreneurs, who succeed in business activities, will be analyzed. By the study, current state of the women entrepreneurs in the labor market of Turkey will be put down, as a result of interferences obtained from the shared experiences of women entrepreneurs. Findings obtained at the end of the study are thought to light the way of future studies for increasing women entrepreneurship.

Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Assembly and Alignment of Ship Power Plants in Modern Shipbuilding

Fine alignment of main ship power plants mechanisms and shaft lines provides long-term and failure-free performance of propulsion system while fast and high-quality installation of mechanisms and shaft lines decreases common labor intensity. For checking shaft line allowed stress and setting its alignment it is required to perform calculations considering various stages of life cycle. In 2012 JSC SSTC developed special software complex “Shaftline” for calculation of alignment of having its own I/O interface and display of shaft line 3D model. Alignment of shaft line as per bearing loads is rather labor-intensive procedure. In order to decrease its duration, JSC SSTC developed automated alignment system from ship power plants mechanisms. System operation principle is based on automatic simulation of design load on bearings. Initial data for shaft line alignment can be exported to automated alignment system from PC “Shaft line”.

Virtual Reality Models used on the Visualization of Construction Activities in Civil Engineering Education

Three-dimensional geometric models have been used to present architectural and engineering works, showing their final configuration. When the clarification of a detail or the constitution of a construction step in needed, these models are not appropriate. They do not allow the observation of the construction progress of a building. Models that could present dynamically changes of the building geometry are a good support to the elaboration of projects. Techniques of geometric modeling and virtual reality were used to obtain models that could visually simulate the construction activity. The applications explain the construction work of a cavity wall and a bridge. These models allow the visualization of the physical progression of the work following a planned construction sequence, the observation of details of the form of every component of the works and support the study of the type and method of operation of the equipment applied in the construction. These models presented distinct advantage as educational aids in first-degree courses in Civil Engineering. The use of Virtual Reality techniques in the development of educational applications brings new perspectives to the teaching of subjects related to the field of civil construction.

Ontology of Collaborative Supply Chain for Quality Management

In the highly competitive and rapidly changing global marketplace, independent organizations and enterprises often come together and form a temporary alignment of virtual enterprise in a supply chain to better provide products or service. As firms adopt the systems approach implicit in supply chain management, they must manage the quality from both internal process control and external control of supplier quality and customer requirements. How to incorporate quality management of upstream and downstream supply chain partners into their own quality management system has recently received a great deal of attention from both academic and practice. This paper investigate the collaborative feature and the entities- relationship in a supply chain, and presents an ontology of collaborative supply chain from an approach of aligning service-oriented framework with service-dominant logic. This perspective facilitates the segregation of material flow management from manufacturing capability management, which provides a foundation for the coordination and integration of the business process to measure, analyze, and continually improve the quality of products, services, and process. Further, this approach characterizes the different interests of supply chain partners, providing an innovative approach to analyze the collaborative features of supply chain. Furthermore, this ontology is the foundation to develop quality management system which internalizes the quality management in upstream and downstream supply chain partners and manages the quality in supply chain systematically.

DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach

Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.

E- Campus as an Environmental and Pedagogical Tool for Online Support

The Internet and the ever growing applications enable communities to share and collaborate through common platforms. However, this growing pattern is not witnessed yet even for elearning. This paper is based on a doctoral research which aimed at researching the ways students interact in an online campus and the supports that they look for and require. Content analysis, based on the Panchoo/Jaillet methodology, was done on four synchronous meetings between a tutor and his ten students. The UNIV-Rct ecampus, analogical to a physical campus, was found to be user friendly and the students enrolled in a master-s course faced no difficulties in using it. In addition to the environmental aspects, the pedagogical implementation of the course has driven the students to interact and collaborate significantly and this has contributed to overcome the problems faced by the distance learners. This completely online model was found to be fruitful in helping distant learners fight their loneliness and brave their difficulties in a socioconstructivism approach.

Quality Fed-Batch Bioprocess Control A Case Study

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Secure Data Aggregation Using Clusters in Sensor Networks

Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.

Virtual Environments...Vehicle for Pedagogical Advancement

Virtual environments are a hot topic in academia and more importantly in courses offered via distance education. Today-s gaming generation view virtual worlds as strong social and interactive mediums for communicating and socializing. And while institutions of higher education are challenged with increasing enrollment while balancing budget cuts, offering effective courses via distance education become a valid option. Educators can utilize virtual worlds to offer students an enhanced learning environment which has the power to alleviate feelings of isolation through the promotion of communication, interaction, collaboration, teamwork, feedback, engagement and constructivists learning activities. This paper focuses on the use of virtual environments to facilitate interaction in distance education courses so as to produce positive learning outcomes for students. Furthermore, the instructional strategies were reviewed and discussed for use in virtual worlds to enhance learning within a social context.

Virtualization Technology as a Tool for Teaching Computer Networks

In this paper is being described a possible use of virtualization technology in teaching computer networks. The virtualization can be used as a suitable tool for creating virtual network laboratories, supplementing the real laboratories and network simulation software in teaching networking concepts. It will be given a short description of characteristic projects in the area of virtualization technology usage in network simulation, network experiments and engineering education. A method for implementing laboratory has also been explained, together with possible laboratory usage and design of laboratory exercises. At the end, the laboratory test results of virtual laboratory are presented as well.

An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Flexible Sensor Array with Programmable Measurement System

This study is concerned with pH solution detection using 2 × 4 flexible sensor array based on a plastic polyethylene terephthalate (PET) substrate that is coated a conductive layer and a ruthenium dioxide (RuO2) sensitive membrane with the technologies of screen-printing and RF sputtering. For data analysis, we also prepared a dynamic measurement system for acquiring the response voltage and analyzing the characteristics of the working electrodes (WEs), such as sensitivity and linearity. In this condition, an array measurement system was designed to acquire the original signal from sensor array, and it is based on the method of digital signal processing (DSP). The DSP modifies the unstable acquisition data to a direct current (DC) output using the technique of digital filter. Hence, this sensor array can obtain a satisfactory yield, 62.5%, through the design measurement and analysis system in our laboratory.

Analysis of Key Factors for Formation of Strategic Alliances in Liner Shipping Company: Service Quality Perspective on Asia/Europe Route after Global Economic Crisis

Strategic alliances generally mean the cooperation or collaboration between firms which pursue for a synergy that each member hopes the benefits from the alliances would be much more than those from individual efforts. Past researches provide us sufficient theories and considerations for alliance forming in liner shipping market. This research reviews important academic journals for the past decade regarding to the most important reasons to form the alliances. We would explain the motive of alliances and details of shipping cooperation in literature review. The paper also empirically investigates the key service quality requirements improved through alliances by using quality function deployment (QFD). Moreover, the research investigates famous shipping reports, shipping consultant websites and most recent shipping publications to find out the executive-s viewpoint of several leading carriers among top 20 to assess current shipping strategic alliance on Asia/Europe route. These comments provide meaningful managerial reasons to consider alliance formations and search if there is any gap between the theories and industrial practice. Analysis of the empirical investigation and top management-s perspective on current market situation will contribute us some meaningful managerial suggestions to evaluate these theories applied to current strategic alliances.