Strain Based Evaluation of Dents in Pressurized Pipes

A dent is a gross distortion of the pipe cross-section. Dent depth is defined as the maximum reduction in the diameter of the pipe compared to the original diameter. Pipeline dent finite element (FE) simulation and theoretical analysis are conducted in this paper to develop an understanding of the geometric characteristics and strain distribution in the pressurized dented pipe. Based on the results, the magnitude of the denting force increases significantly with increasing the internal pressure, and the maximum circumferential and longitudinal strains increase by increasing the internal pressure and the dent depth. The results can be used for characterizing dents and ranking their risks to the integrity of a pipeline.

Magnesium Borate Synthesis by Microwave Method Using MgCl2.6H2O and H3BO3

There are many kinds of metal borates found not only in nature but also synthesized in the laboratory such as magnesium borates. Due to its excellent properties, as remarkable ceramic materials, they have also application areas in anti-wear and friction reducing additives as well as electro-conductive treating agents. The synthesis of magnesium borate powders can be fulfilled simply with two different methods, hydrothermal and thermal synthesis. Microwave assisted method, also another way of producing magnesium borate, can be classified into thermal synthesis because of using the principles of solid state synthesis. It also contributes producing particles with small size and high purity in nano-size material synthesize. In this study the production of magnesium borates, are aimed using MgCl2.6H2O and H3BO3. The identification of both starting materials and products were made by the equipments of, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). After several synthesis steps magnesium borates were synthesized and characterized by XRD and FT-IR, as well.

Effects of Market Share and Diversification on Nonlife Insurers- Performance

The aim of this paper is to investigate the influence of market share and diversification on the nonlife insurers- performance. The underlying relationships have been investigated in different industries and different disciplines (economics, management...), still, no consistency exists either in the magnitude or statistical significance of the relationship between market share (and diversification as well) on one side and companies- performance on the other side. Moreover, the direction of the relationship is also somewhat questionable. While some authors find this relationship to be positive, the others reveal its negative association. In order to test the influence of market share and diversification on companies- performance in Croatian nonlife insurance industry for the period from 1999 to 2009, we designed an empirical model in which we included the following independent variables: firms- profitability from previous years, market share, diversification and control variables (i.e. ownership, industrial concentration, GDP per capita, inflation). Using the two-step generalized method of moments (GMM) estimator we found evidence of a positive and statistically significant influence of both, market share and diversification, on insurers- profitability.

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-Chip RLC Interconnect Load

The resistive-inductive-capacitive behavior of long interconnects which are driven by CMOS gates are presented in this paper. The analysis is based on the ¤Ç-model of a RLC load and is developed for submicron devices. Accurate and analytical expressions for the output load voltage, the propagation delay and the short circuit power dissipation have been proposed after solving a system of differential equations which accurately describe the behavior of the circuit. The effect of coupling capacitance between input and output and the short circuit current on these performance parameters are also incorporated in the proposed model. The estimated proposed delay and short circuit power dissipation are in very good agreement with the SPICE simulation with average relative error less than 6%.

Phase Noise Impact on BER in Space Communication

This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.

Marketing Strategy Analysis of Thai Asia Pacific Brewery Company

The study was a case study analysis about Thai Asia Pacific Brewery Company. The purpose was to analyze the company’s marketing objective, marketing strategy at company level, and marketing mix before liquor liberalization in 2000. Methods used in this study were qualitative and descriptive research approach which demonstrated the following results of the study demonstrated as follows: (1) Marketing objective was to increase market share of Heineken and Amtel, (2) the company’s marketing strategies were brand building strategy and distribution strategy. Additionally, the company also conducted marketing mix strategy as follows. Product strategy: The company added more beer brands namely Amstel and Tiger to provide additional choice to consumers, product and marketing research, and product development. Price strategy: the company had taken the following into consideration: cost, competitor, market, economic situation and tax. Promotion strategy: the company conducted sales promotion and advertising. Distribution strategy: the company extended channels its channels of distribution into food shops, pubs and various entertainment places. This strategy benefited interested persons and people who were engaged in the beer business.

Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“

A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.

Derivative Spectrophotometry Applied to the Determination of Triprolidine Hydrochloride and Pseudoephedrine Hydrochloride in Tablets and Dissolution Testing

A spectrophotometric method was developed for simultaneous quantification of pseudoephedrine hydrochloride (PSE) triprolidine hydrochloride (TRI) using second derivative method (zero-crossing technique). The second derivative amplitudes of PSE and TRI were measured at 271 and 321 nm, respectively. The calibration curves were linear in the range of 200 to 1,000 g/ml for PSE and 10 to 50 g/ml for TRI. The method was validated for specificity, accuracy, precision, limit of detection and limit of quantitation. The proposed method was applied to the assaying and dissolution of PSE and TRI in commercial tablets without any chemical separation. The results were compared with those obtained by the official USP31 method and statistical tests showed that there is no significant between the methods at 95% confidence level. The proposed method is simple, rapid and suitable for the routine quality control application. KeywordsTriprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Assessing the Effects of Explosion Waves on Office and Residential Buildings

Explosions may cause intensive damage to buildings and sometimes lead to total and progressive destruction. Pressures induced by explosions are one of the most destructive loads a structure may experience. While designing structures for great explosions may be expensive and impractical, engineers are looking for methods for preventing destructions resulted from explosions. A favorable structural system is a system which does not disrupt totally due to local explosion, since such structures sustain less loss in comparison with structural ones which really bear the load and suddenly disrupt. Designing and establishing vital and necessary installations in a way that it is resistant against direct hit of bomb and rocket is not practical, economical, or expedient in many cases, because the cost of construction and installation with such specifications is several times more than the total cost of the related equipment.

Improvement of the Reliability of the Industrial Electric Networks

The continuity in the electric supply of the electric installations is becoming one of the main requirements of the electric supply network (generation, transmission, and distribution of the electric energy). The achievement of this requirement depends from one side on the structure of the electric network and on the other side on the avaibility of the reserve source provided to maintain the supply in case of failure of the principal one. The avaibility of supply does not only depends on the reliability parameters of the both sources (principal and reserve) but it also depends on the reliability of the circuit breaker which plays the role of interlocking the reserve source in case of failure of the principal one. In addition, the principal source being under operation, its control can be ideal and sure, however, for the reserve source being in stop, a preventive maintenances which proceed on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system In this work and on the basis of the semi- markovian's processes, the influence of the time of interlocking the reserve source upon the reliability of an industrial electric network is studied and is given the optimal time of interlocking the reserve source in case of failure the principal one, also the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.

Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques

The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.

Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks

A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.

The Association of Matrix Metalloproteinase-3 Gene -1612 5A/6A Polymorphism with Susceptibility to Coronary Artery Stenosis in an Iranian Population

Matrix metalloproteinase-3 (MMP3) is key member of the MMP family, and is known to be present in coronary atherosclerotic. Several studies have demonstrated that MMP-3 5A/6A polymorphism modify each transcriptional activity in allele specific manner. We hypothesized that this polymorphism may play a role as risk factor for development of coronary stenosis. The aim of our study was to estimate MMP-3 (5A/6A) gene polymorphism on interindividual variability in risk for coronary stenosis in an Iranian population.DNA was extracted from white blood cells and genotypes were obtained from coronary stenosis cases (n=95) and controls (n=100) by PCR (polymerase chain reaction) and restriction fragment length polymorphism techniques. Significant differences between cases and controls were observed for MMP3 genotype frequencies (X2=199.305, p< 0.001); the 6A allele was less frequently seen in the control group, compared to the disease group (85.79 vs. 78%, 6A/6A+5A/6A vs. 5A/5A, P≤0.001). These data imply the involvement of -1612 5A/6A polymorphism in coronary stenosis, and suggest that probably the 6A/6A MMP-3 genotype is a genetic susceptibility factor for coronary stenosis.

Utilizing Biological Models to Determine the Recruitment of the Irish Republican Army

Sociological models (e.g., social network analysis, small-group dynamic and gang models) have historically been used to predict the behavior of terrorist groups. However, they may not be the most appropriate method for understanding the behavior of terrorist organizations because the models were not initially intended to incorporate violent behavior of its subjects. Rather, models that incorporate life and death competition between subjects, i.e., models utilized by scientists to examine the behavior of wildlife populations, may provide a more accurate analysis. This paper suggests the use of biological models to attain a more robust method for understanding the behavior of terrorist organizations as compared to traditional methods. This study also describes how a biological population model incorporating predator-prey behavior factors can predict terrorist organizational recruitment behavior for the purpose of understanding the factors that govern the growth and decline of terrorist organizations. The Lotka-Volterra, a biological model that is based on a predator-prey relationship, is applied to a highly suggestive case study, that of the Irish Republican Army. This case study illuminates how a biological model can be utilized to understand the actions of a terrorist organization.

A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow

Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.

A Programmable FSK-Modulator in 350nm CMOS Technology

This paper describes the design of a programmable FSK-modulator based on VCO and its implementation in 0.35m CMOS process. The circuit is used to transmit digital data at 100Kbps rate in the frequency range of 400-600MHz. The design and operation of the modulator is discussed briefly. Further the characteristics of PLL, frequency synthesizer, VCO and the whole design are elaborated. The variation among the proposed and tested specifications is presented. Finally, the layout of sub-modules, pin configurations, final chip and test results are presented.

Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis

Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.

Low Cost Chip Set Selection Algorithm for Multi-way Partitioning of Digital System

This paper considers the problem of finding low cost chip set for a minimum cost partitioning of a large logic circuits. Chip sets are selected from a given library. Each chip in the library has a different price, area, and I/O pin. We propose a low cost chip set selection algorithm. Inputs to the algorithm are a netlist and a chip information in the library. Output is a list of chip sets satisfied with area and maximum partitioning number and it is sorted by cost. The algorithm finds the sorted list of chip sets from minimum cost to maximum cost. We used MCNC benchmark circuits for experiments. The experimental results show that all of chip sets found satisfy the multiple partitioning constraints.

Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.