Fabrication of Al/Cu Clad Sheet by Shear Extrusion

Aluminum/Copper clad sheet has been fabricated using asymmetric extrusion method, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Interfacial microstructure and mechanical properties of Al/Cu clad were studied by scanning electron microscope equipped with energy dispersive X-ray detector, micro-hardness, and tension tests. The asymmetric extrusion bonding was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing extrusion ratio.

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)

As the information age matures, major social infrastructures such as communication, finance, military and energy, have become ever more dependent on information communication systems. And since these infrastructures are connected to the Internet, electronic intrusions such as hacking and viruses have become a new security threat. Especially, disturbance or neutralization of a major social infrastructure can result in extensive material damage and social disorder. To address this issue, many nations around the world are researching and developing various techniques and information security policies as a government-wide effort to protect their infrastructures from newly emerging threats. This paper proposes an evaluation method for information security levels of CIIP (Critical Information Infrastructure Protection), which can enhance the security level of critical information infrastructure by checking the current security status and establish security measures accordingly to protect infrastructures effectively.

Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour

Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p

Information Technology Application for Knowledge Management in Medium-Size Businesses

Result of the study on knowledge management systems in businesses was shown that the most of these businesses provide internet accessibility for their employees in order to study new knowledge via internet, corporate website, electronic mail, and electronic learning system. These business organizations use information technology application for knowledge management because of convenience, time saving, ease of use, accuracy of information and knowledge usefulness. The result indicated prominent improvements for corporate knowledge management systems as the following; 1) administrations must support corporate knowledge management system 2) the goal of corporate knowledge management must be clear 3) corporate culture should facilitate the exchange and sharing of knowledge within the organization 4) cooperation of personnel of all levels must be obtained 5) information technology infrastructure must be provided 6) they must develop the system regularly and constantly. 

Electronic Voting System using Mobile Terminal

Electronic voting (E-voting) using an internet has been recently performed in some nations and regions. There is no spatial restriction which a voter directly has to visit the polling place, but an e-voting using an internet has to go together the computer in which the internet connection is possible. Also, this voting requires an access code for the e-voting through the beforehand report of a voter. To minimize these disadvantages, we propose a method in which a voter, who has the wireless certificate issued in advance, uses its own cellular phone for an e-voting without the special registration for a vote. Our proposal allows a voter to cast his vote in a simple and convenient way without the limit of time and location, thereby increasing the voting rate, and also ensuring confidentiality and anonymity.

A New Method of Adaptation in Integrated Learning Environment

A new method of adaptation in a partially integrated learning environment that includes electronic textbook (ET) and integrated tutoring system (ITS) is described. The algorithm of adaptation is described in detail. It includes: establishment of Interconnections of operations and concepts; estimate of the concept mastering level (for all concepts); estimate of student-s non-mastering level on the current learning step of information on each page of ET; creation of a rank-order list of links to the e-manual pages containing information that require repeated work.

Trust and Security in Electronic Payments: What We Have and Need to Know?

The growth of open networks created the interest to commercialise it. The establishment of an electronic business mechanism must be accompanied by a digital-electronic payment system to transfer the value of transactions. Financial organizations are requested to offer a secure e-payment synthesis with equivalent levels of trust and security served in conventional paper-based payment transactions. The paper addresses the challenge of the first trade problem in e-commerce, provides a brief literature review on electronic payment and attempts to explain the underlying concept and method of trust in relevance to electronic payment.

Trust Building Mechanisms for Electronic Business Networks and Their Relation to eSkills

Globalization, supported by information and communication technologies, changes the rules of competitiveness and increases the significance of information, knowledge and network cooperation. In line with this trend, the need for efficient trust-building tools has emerged. The absence of trust building mechanisms and strategies was identified within several studies. Through trust development, participation on e-business network and usage of network services will increase and provide to SMEs new economic benefits. This work is focused on effective trust building strategies development for electronic business network platforms. Based on trust building mechanism identification, the questionnairebased analysis of its significance and minimum level of requirements was conducted. In the paper, we are confirming the trust dependency on e-Skills which play crucial role in higher level of trust into the more sophisticated and complex trust building ICT solutions.

Interfacial Layer Effect on Novel p-Ni1-xO:Li/n-Si Heterojunction Solar Cells

This study fabricates p-type Ni1−xO:Li/n-Si heterojunction solar cells (P+/n HJSCs) by using radio frequency (RF) magnetron sputtering and investigates the effect of substrate temperature on photovoltaic cell properties. Grazing incidence x-ray diffraction, four point probe, and ultraviolet-visible-near infrared discover the optoelectrical properties of p-Ni1-xO thin films. The results show that p-Ni1-xO thin films deposited at 300 oC has the highest grain size (22.4 nm), average visible transmittance (~42%), and electrical resistivity (2.7 Ωcm). However, the conversion efficiency of cell is shown only 2.33% which is lower than the cell (3.39%) fabricated at room temperature. This result can be mainly attributed to interfacial layer thickness (SiOx) reduces from 2.35 nm to 1.70 nm, as verified by high-resolution transmission electron microscopy.

Supportability Analysis in LCI Environment

Starting from the basic pillars of the supportability analysis this paper queries its characteristics in LCI (Life Cycle Integration) environment. The research methodology contents a review of modern logistics engineering literature with the objective to collect and synthesize the knowledge relating to standards of supportability design in e-logistics environment. The results show that LCI framework has properties which are in fully compatibility with the requirement of simultaneous logistics support and productservice bundle design. The proposed approach is a contribution to the more comprehensive and efficient supportability design process. Also, contributions are reflected through a greater consistency of collected data, automated creation of reports suitable for different analysis, as well as the possibility of their customization according with customer needs. In addition to this, convenience of this approach is its practical use in real time. In a broader sense, LCI allows integration of enterprises on a worldwide basis facilitating electronic business.

The Effect of Cyclic Speed on the Wear Properties of Molybdenum Disulfide Greases under Extreme Pressure Loading Using 4 Balls Wear Tests

The relationship between different types of Molybdenum disulfide greases under extreme pressure loading and different speed situations have been studied using Design of Experiment (DOE) under 1200rpm steady state rotational speed and cyclic frequencies between 2400 and 1200rpm using a Plint machine software to set up the different rotational speed situations.  Research described here is aimed at providing good friction and wear performance while optimizing cyclic frequencies and MoS2 concentration due to the recent concern about grease behavior in extreme pressure applications. Extreme load of 785 Newton was used in conjunction with different cyclic frequencies (2400rpm -3.75min, 1200rpm -7.5min, 2400rpm -3.75min, 1200rpm -7.5min), to examine lithium based grease with and without MoS2 for equal number of revolutions, and a total run of 36000 revolutions; then compared to 1200rpm steady speed for the same total number of revolutions. 4 Ball wear tester was utilized to run large number of experiments randomly selected by the DOE software. The grease was combined with fine grade MoS2 or technical grade then heated to 750C and the wear scar width was collected at the end of each test. DOE model validation results verify that the data were very significant and can be applied to a wide range of extreme pressure applications. Based on simulation results and Scanning Electron images (SEM), it has been found that wear was largely dependent on the cyclic frequency condition. It is believed that technical grade MoS2 greases under faster cyclic speeds perform better and provides antiwear film that can resist extreme pressure loadings. Figures showed reduced wear scars width and improved frictional values.  

Analysis and Comparison of Image Encryption Algorithms

With the fast progression of data exchange in electronic way, information security is becoming more important in data storage and transmission. Because of widely using images in industrial process, it is important to protect the confidential image data from unauthorized access. In this paper, we analyzed current image encryption algorithms and compression is added for two of them (Mirror-like image encryption and Visual Cryptography). Implementations of these two algorithms have been realized for experimental purposes. The results of analysis are given in this paper.

Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.

Investigation on the Antimicrobial Effect of Ammonyx on Some Pathogenic Microbes Observed on Sweatshirt Sport

In this research, the main aim is to investigate the antimicrobial effectiveness of ammonyx solutions finishing on Sweatshirt Sport with immersion method. 60 Male healthy subjects (football player) participated in this study. They were dressed in a Sweatshirt for 14 days and some microbes found on them were investigated. The antimicrobial effect of different ammonyx solutions(1/100, 1/500, 1/1000, 1/2000 v/v solutions of Ammonyx) on the identified microbes was studied by the zone inhabitation method in vitro. In the next step the Sweatshirt Sports were treated with the same different solutions of ammonyx and the antimicrobial effectiveness was assessed by colony count method in different times and the results were compared whit untreated ones. Some mechanical properties of treated cotton/polyester yarn that used in Sweatshirt Sport were measured after 30 days and were compared with untreated one. Finally after finishing, scanning electron microscopy (SEM) was used to compare the surfaces of the finished and unfinished specimens. The results showed the presence of five pathogenic microbes on Sweatshirt Sports such as Escherichia coli, Staphylococcus aureus, Aspergillus, Mucor and Candida. The inhalation time for treated on Sweatshirt Sports improved. The amount of colony growth on treated clothes reduced considerably and moreover the mechanical tests results showed no significant deterioration effect of studies properties in comparison to the untreated yarn. The visual examination of the SEM indicated that the antimicrobial treatments were applied usefully to fabrics.

Application of HVOF Thermal Spraying inHigh Speed Gas Compressor Shafts

In this paper, the application of thermal spray coatings in high speed shafts by a revolution up to 23000 RPM has been studied. Gas compressor shafts are worn in contact zone with journal therefore will be undersized. Wear mechanisms of compressor shaft were identified. The predominant wear mechanism is abrasion wear. The worn surface was coated by hard WC-Co cermets using high velocity oxy fuel (HVOF) after preparation. The shafts were in satisfactory service in 8000h period. The metallurgical and Tribological studies has been made on the worn and coated shaft using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction.

Pyrite from Zones of Mz-Kz Reactivation of Large Faults on the Eastern Slope of the Ural Mountains, Russia

Pyritisation halos are identified in weathering crusts and unconsolidated formations at five locations within large fault structure of the Urals’ eastern slope. Electron microscopy reveals the presence of inclusions and growths on pyrite faces – normally on cubic pyrite with striations, or combinations of cubes and other forms. Following neogenesis types are established: native elements and intermetallic compounds (including gold and silver), halogenides, sulphides, sulfosalts, tellurides, sulphotellurides, selenides, tungstates, sulphates, phosphates, carbon-based substances. Direct relationship is noted between amount and diversity of such mineral phases, and proximity to and scale of ore-grade mineralization. Gold and silver, both in native form and within tellurides, presence of lead (galena, native lead), native tungsten, and, possibly, molybdenite and sulfosalts can indicate gold-bearing formations. First find of native tungsten in the Urals is for the first time – in crystallised and druse-like form. Link is suggested between unusual mineralization and “reducing” hydrothermal fluids from deep-seated faults at later stages of Urals’ reactivation. 

Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory

Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.

Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.