Emotion Dampening Strategy and Internalizing Problem Behavior: Affect Intensity as Control Variables

Contrary to negative emotion regulation, coping with positive moods have received less attention in adolescent adjustment. However, some research has found that everyone is different on dealing with their positive emotions, which affects their adaptation and well-being. The purpose of the present study was to investigate the relationship between positive emotions dampening and internalizing behavior problems of adolescent in Taiwan. A survey was conducted and 208 students (12 to14 years old) completed the strengths and difficulties questionnaire (SDQ), the Affect Intensity Measure, and the positive emotions dampening scale. Analysis methods such as descriptive statistics, t-test, Pearson correlations and multiple regression were adapted. The results were as follows: Emotionality and internalizing problem behavior have significant gender differences. Compared to boys, girls have a higher score on negative emotionality and are at a higher risk for internalizing symptoms. However, there are no gender differences on positive emotion dampening. Additionally, in the circumstance that negative emotionality acted as the control variable, positive emotion dampening strategy was (positive) related to internalizing behavior problems. Given the results of this study, it is suggested that coaching deconstructive positive emotion strategies is to assist adolescents with internalizing behavior problems is encouraged.

Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Mobile Learning Implementation: Students- Perceptions in UTP

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Modeling and Simulation of Photovoltaic based LED Lighting System

Although lighting systems powered by Photovoltaic (PV) cells have existed for many years, they are not widely used, especially in lighting for buildings, due to their high initial cost and low conversion efficiency. One of the technical challenges facing PV powered lighting systems has been how to use dc power generated by the PV module to energize common light sources that are designed to operate efficiently under ac power. Usually, the efficiency of the dc light sources is very poor compared to ac light sources. Rapid developments in LED lighting systems have made this technology a potential candidate for PV powered lighting systems. This study analyzed the efficiency of each component of PV powered lighting systems to identify optimum system configurations for different applications.

Measuring Pressure Wave Velocity in a Hydraulic System

Pressure wave velocity in a hydraulic system was determined using piezo pressure sensors without removing fluid from the system. The measurements were carried out in a low pressure range (0.2 – 6 bar) and the results were compared with the results of other studies. This method is not as accurate as measurement with separate measurement equipment, but the fluid is in the actual machine the whole time and the effect of air is taken into consideration if air is present in the system. The amount of air is estimated by calculations and comparisons between other studies. This measurement equipment can also be installed in an existing machine and it can be programmed so that it measures in real time. Thus, it could be used e.g. to control dampers.

Effects of Catalyst Tubes Characteristics on a Steam Reforming Process in Ammonia

The tubes in an Ammonia primary reformer furnace operate close to the limits of materials technology in terms of the stress induced as a result of very high temperatures, combined with large differential pressures across the tube wall. Operation at tube wall temperatures significantly above design can result in a rapid increase in the number of tube failures, since tube life is very sensitive to the absolute operating temperature of the tube. Clearly it is important to measure tube wall temperatures accurately in order to prevent premature tube failure by overheating.. In the present study, the catalyst tubes in an Ammonia primary reformer has been modeled taking into consideration heat, mass and momentum transfer as well as reformer characteristics.. The investigations concern the effects of tube characteristics and superficial tube wall temperatures on of the percentage of heat flux, unconverted methane and production of Hydrogen for various values of steam to carbon ratios. The results show the impact of catalyst tubes length and diameters on the performance of operating parameters in ammonia primary reformers.

Environmental Analysis of Springs in Urban Areas–A Methodological Proposal

The springs located in urban areas are the outpouring of surface water, which can serve as water supply, effluent receptors and important local macro-drainage elements. With unplanned occupation, non-compliance with environmental legislation and the importance of these water bodies, it is vital to analyze the springs within urban areas, considering the Brazilian forest code. This paper submits an analysis and discussion methodology proposal of environmental compliance functions of urban springs, by means of G.I.S. - Geographic Information System analysis - and in situ analysis. The case study included two springs which exhibit a history of occupation along its length, with different degrees of impact. The proposed method is effective and easy to apply, representing a powerful tool for analyzing the environmental conditions of springs in urban areas.

Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Totally Integrated Smart Energy System through Data Acquisition via Remote Location

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Colour Stability of Wild Cactus Pear Juice

Prickly pear (Opuntia spp) fruit has received renewed interest since it contains a betalain pigment that has an attractive purple colour for the production of juice. Prickly pear juice was prepared by homogenizing the fruit and treating the pulp with 48 g of pectinase from Aspergillus niger. Titratable acidity was determined by diluting 10 ml prickly pear juice with 90 ml deionized water and titrating to pH 8.2 with 0.1 N NaOH. Brix was measured using a refractometer and ascorbic acid content assayed spectrophotometrically. Colour variation was determined colorimetrically (Hunter L.a.b.). Hunter L.a.b. analysis showed that the red purple colour of prickly pear juice had been affected by juice treatments. This was indicated by low light values of colour difference meter (CDML*), hue, CDMa* and CDMb* values. It was observed that non-treated prickly pear juice had a high (colour difference meter of light) CDML* of 3.9 compared to juice treatments (range 3.29 to 2.14). The CDML* significantly (p

Identification of PIP Aquaporin Genes from Wheat

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)

Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.

A Message Passing Implementation of a New Parallel Arrangement Algorithm

This paper describes a new algorithm of arrangement in parallel, based on Odd-Even Mergesort, called division and concurrent mixes. The main idea of the algorithm is to achieve that each processor uses a sequential algorithm for ordering a part of the vector, and after that, for making the processors work in pairs in order to mix two of these sections ordered in a greater one, also ordered; after several iterations, the vector will be completely ordered. The paper describes the implementation of the new algorithm on a Message Passing environment (such as MPI). Besides, it compares the obtained experimental results with the quicksort sequential algorithm and with the parallel implementations (also on MPI) of the algorithms quicksort and bitonic sort. The comparison has been realized in an 8 processors cluster under GNU/Linux which is running on a unique PC processor.

Cooperative Multi Agent Soccer Robot Team

This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.

Object-Oriented Programming Strategies in C# for Power Conscious System

Low power consumption is a major constraint for battery-powered system like computer notebook or PDA. In the past, specialists usually designed both specific optimized equipments and codes to relief this concern. Doing like this could work for quite a long time, however, in this era, there is another significant restraint, the time to market. To be able to serve along the power constraint while can launch products in shorter production period, objectoriented programming (OOP) has stepped in to this field. Though everyone knows that OOP has quite much more overhead than assembly and procedural languages, development trend still heads to this new world, which contradicts with the target of low power consumption. Most of the prior power related software researches reported that OOP consumed much resource, however, as industry had to accept it due to business reasons, up to now, no papers yet had mentioned about how to choose the best OOP practice in this power limited boundary. This article is the pioneer that tries to specify and propose the optimized strategy in writing OOP software under energy concerned environment, based on quantitative real results. The language chosen for studying is C# based on .NET Framework 2.0 which is one of the trendy OOP development environments. The recommendation gotten from this research would be a good roadmap that can help developers in coding that well balances between time to market and time of battery.

Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

Biodiesel Production over nano-MgO Supported on Titania

Nano-MgO was successfully deposited on titania using deposition-precipitation method. The catalyst produced was characterised using FTIR, XRD, BET and XRF and its activity was tested on the transesterification reaction of soybean oil to biodiesel. The catalyst activity improved when the reaction temperature was increasedfrom 150 and 225 OC. It was also observed that increasing the reaction time above 1h had no significant benefit on conversion. The stability fixed MgO on TiO2 was investigated using XRF and ICP-OES. It was observed that MgO loss during the reaction was between 0.5-2.3 percent and that there was no correlation between the reaction temperature and the MgO loss.