Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .





References:
[1] Forbes, J. F., & Marlin, T. E. " Design cost: a systematic approach to
technology selection for model-based real-time optimization systems"
Computers and Chemical Engineering, 20 (6/7), 717 (1996).
[2] Yale Zhang, Dayadeep Monder, J. Fraser Forbes" Real-time
optimization under parametric uncertainty:a probability constrained
approach" Journal of Process Control 12, 373-389, (2002).
[3] Song, C.,"An overview of new Approaches to Deep Desulfurization for
Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel",Catal. Today, 86,
211(2003).
[4] Hans. Korsten, U.Hoffmann "Three - Phase Reactor Model for
Hydrotreating in Pilot Trickle - Bed Reactors "AICHE. J, Vol, 42, No.5,
May (1996).
[5] H.Yamata, Sh.Goto"Advantages of Counter-Current Operation for
Hydrodesulfurization in Trickle bed Reactors"Korean J.Chem.Eng.21
(4), 773-776(2004).
[6] Chowdhury, R., Pedernera, E.and Reimert, R.," Trickle Bed Reactor
Model For Desulfurization and Dearomatization of Diesel,"AICHE J.,
48,126(2002).
[7] Van Parys,I.A.;Froment,G.F.Kinetics of Hydrodesulfurization on a
Como/y-Al2o3 catalyst.1. Kinetics of the Hydrogenolysis of
Thiophene." Ind Eng.Chem.Prod.Res, Dev.25, 431, (1986).
[8] Van Parys, I.A.;Hosten,L.H.;Froment, G.F."Kinetics of
Hydrodesulfurizationon a Como/y-Al2o3 catalyst .2. Kinetics of the
Hydrogenolysis of Benzothiophene "Ind Eng.Chem.Prod.Res, Dev.25,
437. (1986).
[9] Broderick, D.H.; Gates, B.C." Hydrogenolysis and hydrogenation of
Dibenzothiophene Catalyzed by Sulfided CoO-MoO3/ y-Al2o3: The
Riaction Kinetics". AICHE J.27, 663. (1981).
[10] Edvisson, R.; Irandost, S." Hydrodesulfurization of dibenzothiophene in
a Monolithic Catalyst Reactor." Ind. Eng.Chem.Res, 32,391, (1993).
[11] Gilbert. F.Froment, cuy A. Depauw, V. Vanrysselberghe "Kinetic
modeling and reactor simulation in hydrodesulfuriztion of oil fractions. "
Ind. Eng. Chem. Res, 33, P.2975 - 2988 (1994).
[12] V.Vanrysselberghe, G.F.Froment. "Hydrodesulfurization of
dibenzothiophene on a CoMo/Al2O3 catalyst: reaction network and
kinetics. " Ind.Eng.Chem.Res, 3, 3311-3318, (1996).
[13] Dimitrios G.Avraam, Iacovos A.Vasalos" HdPro:a mathematical model
of trickle -bed reactors for the catalytic hydroprocessing of oil
feedstocks" Catalysis Today 79-80;275-283;(2003).
[14] V.Vanrysselberghe, G.F.Froment "Kinetic Modeling of
Hydrodesulfurization of oil fractions: Light cycle oil ". Ind, Eng. Chem.
Res, 37, 4231 - 4240, (1998).
[15] 12. S.Z.Abghari, J.Towfighi, R.Karimzadeh, M.Omidkhah, Scientia
Iranica, 15(4), 1112 (2008).
[16] 13. L.Davies, Efficiency in Research Development, and Production: The
Statistical Design and Analysis of Chemical Experiments, the Royal
Society of Chemistry (1993).
[17] S.Zahedi.Abghari, J.Towfighi, R.karimzadehand, M.omidkhah,
"Application of Response Surface Methodology in Study of the Product
Yield Distribution of Thermal Cracking of Atmospheric Gasoil",
Scientia Iranica vol. 15,Nov.4,pp1123-1135(2008).
[18] D. Ferdous, A. K. Dalai, and J. Adjaye; Hydrodenitrogenation and
Hydrodesulfurization of Heavy Gas Oil Using NiMo/Al2O3 Catalyst
Containing Boron: Experimental and Kinetic Studies. Ind. Eng. Chem.
Res. 2006, 45, 544.
[19] Botchewey, C.; Dalai, A. K.; Adjaye, J. Two-Stage Hydrotreating of
Athabasca Heavy gas Oil with Interstage Hydrogen sulphide Removal:
Effect of Process Conditions and Kinetic Analysis. Ind. Eng. Chem. Res.
2004, 43, 5854.
[20] Yao Wang, Kinetics of Hydrodesulfurization of Dibenzothiophend
catalyzed by sulfided Co-Mo/MCM-41, Ind. Eng. Chem. Res., 2004, 43,
2324.