Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

On Diffusion Approximation of Discrete Markov Dynamical Systems

The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.

Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks

In this paper, we propose an energy efficient cluster based communication protocol for wireless sensor network. Our protocol considers both the residual energy of sensor nodes and the distance of each node from the BS when selecting cluster-head. This protocol can successfully prolong the network-s lifetime by 1) reducing the total energy dissipation on the network and 2) evenly distributing energy consumption over all sensor nodes. In this protocol, the nodes with more energy and less distance from the BS are probable to be selected as cluster-head. Simulation results with MATLAB show that proposed protocol could increase the lifetime of network more than 94% for first node die (FND), and more than 6% for the half of the nodes alive (HNA) factor as compared with conventional protocols.

Voice Command Recognition System Based on MFCC and VQ Algorithms

The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.

Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding

Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.

A New Extended Group Mutual Exclusion Algorithm with Low Message Complexity in Distributed Systems

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. In the group mutual exclusion, multiple processes can enter a critical section simultaneously if they belong to the same group. In the extended group mutual exclusion, each process is a member of multiple groups at the same time. As a result, after the process by selecting a group enter critical section, other processes can select the same group with its belonging group and can enter critical section at the moment, so that it avoids their unnecessary blocking. This paper presents a quorum-based distributed algorithm for the extended group mutual exclusion problem. The message complexity of our algorithm is O(4Q ) in the best case and O(5Q) in the worst case, where Q is a quorum size.

Reconfigurable Autonomous Mini Robot Design using CPLD's

This paper explains a project based learning method where autonomous mini-robots are developed for research, education and entertainment purposes. In case of remote systems wireless sensors are developed in critical areas, which would collect data at specific time intervals, send the data to the central wireless node based on certain preferred information would make decisions to turn on or off a switch or control unit. Such information transfers hardly sums up to a few bytes and hence low data rates would suffice for such implementations. As a robot is a multidisciplinary platform, the interfacing issues involved are discussed in this paper. The paper is mainly focused on power supply, grounding and decoupling issues.

Survey of Impact of Production and Adoption of Nanocrops on Food Security

Perspective of food security in 21 century showed shortage of food that production is faced to vital problem. Food security strategy is applied longtime method to assess required food. Meanwhile, nanotechnology revolution changes the world face. Nanotechnology is adequate method utilize of its characteristics to decrease environmental problems and possible further access to food for small farmers. This article will show impact of production and adoption of nanocrops on food security. Population is researchers of agricultural research center of Esfahan province. The results of study show that there was a relationship between uses, conversion, distribution, and production of nanocrops, operative human resources, operative circumstance, and constrains of usage of nanocrops and food security. Multivariate regression analysis by enter model shows that operative circumstance, use, production and constrains of usage of nanocrops had positive impact on food security and they determine in four steps 20 percent of it.

An Integrated Natural Language Processing Approach for Conversation System

The main aim of this research is to investigate a novel technique for implementing a more natural and intelligent conversation system. Conversation systems are designed to converse like a human as much as their intelligent allows. Sometimes, we can think that they are the embodiment of Turing-s vision. It usually to return a predetermined answer in a predetermined order, but conversations abound with uncertainties of various kinds. This research will focus on an integrated natural language processing approach. This approach includes an integrated knowledge-base construction module, a conversation understanding and generator module, and a state manager module. We discuss effectiveness of this approach based on an experiment.

Influence of the Entropic Parameter on the Flow Geometry and Morphology

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Effects of Microwave Heating on Biogas Production, Chemical Oxygen Demand and Volatile Solids Solubilization of Food Residues

This paper presents the results of the preliminary investigation of microwave (MW) irradiation pretreatments on the anaerobic digestion of food residues using biochemical methane potential (BMP) assays. Low solids systems with a total solids (TS) content ranging from 5.0-10.0% were analyzed. The inoculum to bulk mass of substrates to water ratio was 1:2:2 (mass basis). The experimental conditions for pretreatments were as follows: a control (no MW irradiation), two runs with MW irradiation for 15 and 30 minutes at 320 W, and another two runs with MW irradiation at 528 W for 30 and 60 minutes. The cumulative biogas production were 6.3 L and 8.7 L for 15min/320 W and 30min/320 W MW irradiation conditions, respectively, and 10.5 L and 11.4 L biogas for 30min/528 W and 60min/528 W, respectively, as compared to the control giving 5.8 L biogas. Both an increase in exposure time of irradiation and power of MW had increased the rate and yield of biogas. Singlefactor ANOVA tests (p

Digital Filter for Cochlear Implant Implemented on a Field- Programmable Gate Array

The advent of multi-million gate Field Programmable Gate Arrays (FPGAs) with hardware support for multiplication opens an opportunity to recreate a significant portion of the front end of a human cochlea using this technology. In this paper we describe the implementation of the cochlear filter and show that it is entirely suited to a single device XC3S500 FPGA implementation .The filter gave a good fit to real time data with efficiency of hardware usage.

Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant

Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.

Research on the Survivability of Embedded Real-time System

Introducing survivability into embedded real-time system (ERTS) can improve the survivability power of the system. This paper mainly discusses about the survivability of ERTS. The first is the survivability origin of ERTS. The second is survivability analysis. According to the definition of survivability based on survivability specification and division of the entire survivability analysis process for ERTS, a survivability analysis profile is presented. The quantitative analysis model of this profile is emphasized and illuminated in detail, the quantifying analysis of system was showed helpful to evaluate system survivability more accurate. The third is platform design of survivability analysis. In terms of the profile, the analysis process is encapsulated and assembled into one platform, on which quantification, standardization and simplification of survivability analysis are all achieved. The fourth is survivability design. According to character of ERTS, strengthened design method is selected to realize system survivability design. Through the analysis of embedded mobile video-on-demand system, intrusion tolerant technology is introduced in whole survivability design.

A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.

Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop

One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.

Text Summarization for Oil and Gas News Article

Information is increasing in volumes; companies are overloaded with information that they may lose track in getting the intended information. It is a time consuming task to scan through each of the lengthy document. A shorter version of the document which contains only the gist information is more favourable for most information seekers. Therefore, in this paper, we implement a text summarization system to produce a summary that contains gist information of oil and gas news articles. The summarization is intended to provide important information for oil and gas companies to monitor their competitor-s behaviour in enhancing them in formulating business strategies. The system integrated statistical approach with three underlying concepts: keyword occurrences, title of the news article and location of the sentence. The generated summaries were compared with human generated summaries from an oil and gas company. Precision and recall ratio are used to evaluate the accuracy of the generated summary. Based on the experimental results, the system is able to produce an effective summary with the average recall value of 83% at the compression rate of 25%.

MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks

Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.

Estimation of Production Function in Fishery on the Coasts of Caspian Sea

This research was conducted for the first time at the southeastern coasts of the Caspian Sea in order to evaluate the performance of osteichthyes cooperatives through production (catch) function. Using one of the indirect valuation methods in this research, contributory factors in catch were identified and were inserted into the function as independent variables. In order to carry out this research, the performance of 25 Osteichthyes catching cooperatives in the utilization year of 2009 which were involved in fishing in Miankale wildlife refuge region. The contributory factors in catch were divided into groups of economic, ecological and biological factors. In the mentioned function, catch rate of the cooperative were inserted into as the dependant variable and fourteen partial variables in terms of nine general variables as independent variables. Finally, after function estimation, seven variables were rendered significant at 99 percent reliably level. The results of the function estimation indicated that human resource (fisherman quantity) had the greatest positive effect on catch rate with an influence coefficient of 1.7 while weather conditions had the greatest negative effect on the catch rate of cooperatives with an influence coefficient of -2.07. Moreover, factors like member's share, experience and fisherman training and fishing effort played the main roles in the catch rate of cooperative with influence coefficients of 0.81, 0.5 and 0.21, respectively.