Optimized Calculation of Hourly Price Forward Curve (HPFC)

This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented.

Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Evaluation Biofilm Sewage Treatment Plant

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Preliminary Study on Fixture Layout Optimization Using Element Strain Energy

The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.

Re-Handling Operations in Small Container Terminal Operated by Reach Stackers

In this paper an average number of re-handlings analysis is proposed to solve the problem of finding bays configuration in small container terminal in Gliwice, Poland. Rehandlings in this terminal can be performed only by reachstackers. The goal of the heuristic is to plan the reachstacter moves in the terminal, assuming that the target containers are reached and the number of re-handings is minimized. The real situation requires also to take into account the model of the problem environment uncertainty caused by the fact that many containers are not delivered to the terminal on time, or can not be sent on scheduled time. To enable this, the heuristic uses some assumptions to simplify problem analysis.

A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing

IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.

Economic Dispatch Fuzzy Linear Regression and Optimization

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Challenges of Sustainable Construction in Kuwait: Investigating level of Awareness of Kuwait Stakeholders

Buildings and associated construction methods have a significant impact on the environment. As construction activity increases in Kuwait, there is a need to create design and construction strategies which will minimize the environmental impact of new buildings. Green construction is a design philosophy intended to improve the sustainability of construction by the minimization of resource depletion and CO2 emissions throughout the life cycle of buildings. This paper presents and discusses the results of a survey that was conducted in Kuwait, with the objective of investigating the awareness of developers and other stakeholders regarding their understanding and use of green construction strategies. The results of the survey demonstrate that whilst there seems to be a reasonable level of awareness amongst the stakeholders, this awareness is not currently well reflected in the design and construction practices actually being applied. It is therefore concluded is there is a pressing need for intervention from Government in order that the use of sustainable green design and construction strategies becomes the norm in Kuwait.

The Assessment of Interactions in Ratios Control Schemes for a Binary Distillation Column

In this paper we will consider the most known ratios control schemes ((L/D, V/B),(L/D,V/F), Ryskamp-s, and (D/(L+D),V/B)) for binary distillation column and we compare them in the basis of interactions and disturbance propagation. The models for these configurations are deuced using mathematical transformations taking the energy balance structure (LV) as a base model. The dynamic relative magnitude criterion (DRMC) is used to assess the interactions. The results show that the introduction of ratios in controlling the column tends to minimize the degree of interactions between the loops.

Design Parameters Selection and Optimization of Weld Zone Development in Resistance Spot Welding

This paper investigates the development of weld zone in Resistance Spot Welding (RSW) which focuses on weld nugget and Heat Affected Zone (HAZ). The effects of four factors namely weld current, weld time, electrode force and hold time were studied using a general 24 factorial design augmented by five centre points. The results of the analysis showed that all selected factors except hold time exhibit significant effect on weld nugget radius and HAZ size. Optimization of the welding parameters (weld current, weld time and electrode force) to normalize weld nugget and to minimize HAZ size was then conducted using Central Composite Design (CCD) in Response Surface Methodology (RSM) and the optimum parameters were determined. A regression model for radius of weld nugget and HAZ size was developed and its adequacy was evaluated. The experimental results obtained under optimum operating conditions were then compared with the predicted values and were found to agree satisfactorily with each other

Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications

The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.

Application of Computational Intelligence Techniques for Economic Load Dispatch

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Minimizing Examinee Collusion with a Latin- Square Treatment Structure

Cheating on standardized tests has been a major concern as it potentially minimizes measurement precision. One major way to reduce cheating by collusion is to administer multiple forms of a test. Even with this approach, potential collusion is still quite large. A Latin-square treatment structure for distributing multiple forms is proposed to further reduce the colluding potential. An index to measure the extent of colluding potential is also proposed. Finally, with a simple algorithm, the various Latin-squares were explored to find the best structure to keep the colluding potential to a minimum.

A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving

Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.

An Experimental Study and Influence of BHF and Die Radius in Deep Drawing Process on the Springback

A lot of research made during these last 15 years showed that the quantification of the springback has a significant role in the industry of sheet metal forming. These studies were made with the objective of finding techniques and methods to minimize or completely avoid this permanent physical variation. Moreover, the use of steel and aluminum alloys in the car industry and aviation poses every day the problem of the springback. The determination in advance of the quantity of the springback allows consequently the design and manufacture of the tool. The aim of this paper is to study experimentally the influence of the blank holder force BHF and the radius of curvature of the die on the springback and their influence on the strain in various zone of specimen. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to displacement.

A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem

Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.

A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm

The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.

Hybrid Minimal Repair for a Serial System

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.