Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.

Stack Ventilation for an Office Building with a Multi-Story Atrium

This study examines the stack ventilation performance of an office building located in Taipei, Taiwan. Atriums in this building act as stacks that facilitate buoyancy-driven ventilation. Computational Fluid Dynamic (CFD) simulations are used to identify interior airflow patterns, and then used these patterns to assess the building’s heat expulsion efficiency. Ambient temperatures of 20°C were adopted as the typical seasonal spring temperature range in Taipei. Further, “zero-wind” conditions are established to ensure simulation results reflected only the buoyancy effect. After checking results against neutral pressure level (NPL) level, airflow, air velocity, and indoor temperature stratification, the lower stack is modified to reduce the NPL in order to remove heat accumulated on the top floor.

A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies

A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.

Lean in Large Enterprises: Study Results

The idea of Lean Manufacturing has been known for 20 years. In Polish enterprises its first implementation took place in the automotive industry in the 90s. Many companies, in order to reduce costs, use lower quality materials or overload employees with work and do not notice other possibilities for improving the company’s effectiveness. Enterprises are afraid of the unknown. And that is the problem in many cases with the Lean Manufacturing conception. This article presents the study results conducted in enterprises, the aim of which was to identify waste awareness and the need of lean manufacturing implementation. The authors also wanted to gain information on the most commonly used tools and the way of implementation and the methods of the effects assessment of using the mentioned conception. The study was conducted in large enterprises located on a limited area.

Influence of Strength Abilities on Quality of the Handstand

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

A 3 Dimensional Simulation of the Repeated Load Triaxial Test

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.

Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters

In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5µm, a filling ratio of 0.8 and grating height of h=0.2µm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8µm. The emittance drops below 0.2 at wavelengths above 1.8µm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40°, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.

Evaluation of Packaging Conditions Influence on the Content of Amino Acids of Marinated Venison

Venison is well known as a traditional meat type in Europe and it is lower in calories, cholesterol and fat content than common cuts of beef, pork or lamb. The aim of the current research was to determine content of amino acids (LVS ISO 13903:2005) in different types of marinades marinated venison during storage. Beef as a control was analyzed for comparison of obtained results. The meat (2x3x2cm) pieces were marinated in two different types of marinades: red wine and tomato sauce marinade. The prepared meat samples were stored (marinated) at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film under modified atmosphere (C02 40%+N2 60%) without and with iron based oxygen scavenger sachets (Mitsubishi Gas Chemical Europe Ageless®), all samples were compared with packed marinated products in air ambiance. Results of current research show that changes of amino acids content in marinated venison mainly depend on packaging conditions.

Characterization, Classification and Agricultural Potentials of Soils on a Toposequence in Southern Guinea Savanna of Nigeria

This work assessed some properties of three pedons on a toposequence in Ijah-Gbagyi district in Niger State, Nigeria. The pedons were designated as JG1, JG2 and JG3 representing the upper, middle and lower slopes respectively. The surface soil was characterized by dark yellowish brown (10YR3/4) color at the JG1 and JG2 and very dark grayish brown (10YR3/2) color at JG3. Sand dominated the mineral fraction and its content in the surface horizon decreased down the slope, whereas silt content increased down the slope due to sorting by geological and pedogenic processes. Although organic carbon (OC), total nitrogen (TN) and available phosphorus (P) were rated high, TN and available P decreased down the slope. High cation exchange capacity (CEC) was an indication that the soils have high potential for plant nutrients retention. The pedons were classified as Typic Haplustepts/ Haplic Cambisols (Eutric), Plinthic Petraquepts/ Petric Plinthosols (Abruptic) and Typic Endoaquepts/ Endogleyic Cambisols (Endoclayic).

Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models

In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.

A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Study of Heat Transfer of Nanofluids in a Circular Tube

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.

Tool Wear of (Ti,W,Si)N-Coated WC-Ni-Based Cemented Carbide in Cutting Hardened Steel

In this study, WC-Ni-based cemented carbides having different nickel contents were used as the substrate for cutting tool materials. Hardened steel was turned by a (Ti,W,Si)N-coated WC-Ni-based cemented carbide tool, and the tool wear was experimentally investigated. The following results were obtained: (1) In the (Ti,W,Si)N-coated WC-Ni-based cemented carbide, the hardness of the coating film was not much different from the content of the binding material, Ni, and the adhesion strength increased with a decrease in Ni content. (2) There is little difference between the wear progress of the (Ti,W,Si)N-coated WC-7%Ni-based cemented carbide tool and that of the (Ti,W,Si)N-coated WC-6%Co-based cemented carbide tool. (3) The wear progress of the (Ti,W,Si)N-coated WC-Ni-based cemented carbide became slower with a decrease in Ni content. From the above, it is has become clear that WC-Ni-based cemented carbide can be used as a substrate for cutting tool materials.

Absorbed Dose Measurement in Gonads Menduring Abdominal and Pelvicradiotherapy

Two different testicular tissues have to be distinguished in regard to radiation damage: first the seminiferous tubules, corresponding to the sites of spermatogenesis, which are extremely radiosensitive. Second the testosterone secreting Leydig cells, which are considered to be less radiosensitive. This study aims to estimate testicular dose and the associated risks for infertility and hereditary effects from Abdominal and pelvic irradiation. Radiotherapy was simulated on a humanoid phantom using a 15 MV photon beam. Testicular dose was measured for various field sizes and tissue thicknesses along beam axis using an ionization chamber and TLD. For transmission Factor Also common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate Ionisation chambers. Gonadal dose was reduced by placing lead cups around the testes supplemented by a field edge block. For a tumor dose of 100 cGy, testicular dose was 2.96-8.12 cGy depending upon the field size and the distance from the inferior field edge. The treatment at parameters, the presence of gonad shield and the somatometric characteristics determine whether testicular dose can exceed 1 Gy which allows a complete recovery of spermatogenesis.

Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Development of Logic Model for R&D Program Plan Analysis in Preliminary Feasibility Study

The Korean Government has applied the preliminary feasibility study to new government R&D program plans as a part of an evaluation system for R&D programs. The preliminary feasibility study for the R&D program is composed of 3 major criteria such as technological, policy and economic analysis. The program logic model approach is used as a part of the technological analysis in the preliminary feasibility study. We has developed and improved the R&D program logic model. The logic model is a very useful tool for evaluating R&D program plans. Using a logic model, we can generally identify important factors of the R&D program plan, analyze its logic flow and find the disconnection or jump in the logic flow among components of the logic model.

Efficacy of Biosimilar Pegylated Interferon Alpha 40 KD (Peg INF) in Chronic Hepatitis C Infection

Introduction: Pegylated Interferon and Ribavirin combination is standard of care in the management of chronic HCV infected patients. Efficacy of the therapy is judged by the ability to achieve biochemical and virological response as judged by RVR, EVR, ETR and SVR.Objective: To evaluate the efficacy of newly marketed biosimilar Pegylated Interferon Alpha 40KD (Peg INF) in chronic HCV patients. Materials and methods: This was observational, prospective multicentre study to evaluate the ability of biosimilar pegylated interferon alfa 2a (40KD) along with Ribavirin (weight based) to achieve SVR. The enrolled patients were separated into Naïve (A), Relapsers (B) and Non Responders(C) based on the previous history of interferon exposure and its response. The RGT was followed on ALT and RVR, EVR, ETR and SVR.Results:As per protocol analysis estimated SVR for three groups is 86.6% for naïve, 89.4% for relapsers and 52.4% for non-responders to standard interferon. Conclusion: It is concluded that Bio-similar pegylated interferon alfa-2a (40kD) along with Ribavirin has good anti-viral efficacy in Naïve, Relapsers and Non-responders to standard IFN of chronic HCV infected patients requiring treatment.

Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.

Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.