Study of Heat Transfer of Nanofluids in a Circular Tube

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.





References:
[1] S.U.S Choi, Z.G Zhang, W Yu, F.E Lockwood and E.A Grulke ,
“Anomalous thermal conductivity enhancement in nano-tube
suspensions”, Applied Physics Letters, No. 79 2001, pp 2252–2254.
[2] S.K Das, N Putta, P Thiesen and W Roetzel, “Temperature dependence
of thermal conductivity enhancement for nanofluids”, ASME Trans. J.
Heat Transfer, No. 125, 2003, pp 567–574.
[3] S.U.S. Choi, “Developments and Applications of Non-Newtonian
Flows”, Fluids Engineering Division FED, No. 231, 1995, pp 99-112.
[4] L. Godson, B. Raja, D. Mohan and S. Wongwises, “Enhancement of
heat transfer using nanofluids”, Renew. Sustainable Energy Rev., Vol.
14, No2, 2009, pp 629-641.
[5] Y.Li, J. Zhou, S. Tung, E. Schneider and S. Xi, “A review on
development of nanofluid preparation and characterization”, Powder
Technol., Vol. 196, No 2, 2009, pp 89-101.
[6] W. Yu, D. M. France, J.L. Routbort and S.U.S. Choi, “Review and
comparison of nanofluid thermal conductivity and heat transfer
enhancement”, Heat transf. Eng., Vol. 29, No 5, 2008, pp 432-460.
[7] B.C Pak. and Y. I. Cho, “Hydrodynamic and heat transfer study of
dispersed fluids”, Int. J. Heat Mass Transf., Vol. 11, 1998, pp 5181-
5201.
[8] D. Wen and Y. Ding , “Experimental investigation into convective heat
transfer of nanofluids at the entrance region under laminar flow
conditions”, Int. J. Heat Mass Transfer, No. 47, 2004, pp 5181–5188.
[9] S. Z. Heris, S. G. Etemad and M. N. Esfahany, “Experimental
investigation of oxide nanofluids laminar flow convective heat transfer”,
Int. Commun. Heat Mass Transf, Vol. 33, No 4, 2006, pp 529-535.
[10] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu , “Heat transfer and
flow behaviour of aqueous suspensions of TiO2 nanoparticles”, Int. J.
Heat Mass Transf., Vol. 50, No 11, 2007, pp 2272-2281.
[11] C.T. Nguyen, G. Roy, C. Gauthier and N. Galaris, Heat transfer
enhancement using Al2O3 water nanofluid for an electronic liquid
cooling system, App. Therm. Eng., Vol. 27, No 8, 2007, pp 1501-1506.
[12] Y. Ding, H. Alias, D. Wen and R. A. Williams , Heat transfer of aqueous
suspensions of Carbon nanotubes, Int. Commun. Heat Mass Transf, Vol.
49, 2006, pp 240-250.
[13] P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlson, D.A. Kessler and K.
Annamalai , “An experimental study on the effect of ultrasonication on
viscosity and heat transfer performance of multiwall carbon nanotubebased
aqueeous nanofluids”, Int. J. Heat Mass Transf., Vol 52, No 21,
2009, pp 5090-5101.
[14] Y. Xuan and Q. Li , “Investigation on convective heat transfer and flow
features of nanofluids”, Int. J. Heat Mass Transfer, Vol. 125, 2003, pp
151-155.
[15] Y.Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson and G.Wu, “Heat
transfer properties of nanoparticle in fluid dispersions”, Int. J. Heat
Mass Transfer, Vol. 48, No. 6, 2005, pp 1107-1116.
[16] W.Yu, D. M.France, D. S.Smith, E.V. Timofeeva and J.L. Routbort ,
“Heat transfer to a Silicon Carbide/water nanofluid” , Int. J. Heat Mass
Transfer, Vol. 52, No. 15, 2009, pp 3606-3612.
[17] S.Torii and W. J. Yang, “Heat transfer augmentation of aqueous
suspensions of nano-diamonds in turbulent pipe flow”, J. Heat Transf.,
Vol. 131, 2009, pp 1-5.
[18] S.V. Patankar, “Computation of Conduction and Duct Flow Heat
Transfer”, Hemisphere Publishing Corporation, New York 1988.
[19] S.P. Jang and S.U.S. Choi ,” Effects of various parameters on nanofluid
thermal conductivity”, ASME J. Heat Transfer, No 129, 2007, pp 617-
623.
[20] E.Abu-Nada, Z. Masoud, H. Oztop and A. Campo , “Effect of nanofluid
variable properties on natural convection in enclosures”, Int. J. Thermal
Sci., No 49, 2010, pp 479-491.
[21] J. C. Maxwell , “Treatise on Electricity and Magnetism”, Oxford:
Clarendon Press 1873.
[22] H.Brinkman, “The viscosity of concentrated suspensions and solutions”,
J. Chem. Phys., No. 20, 1952, pp. 571-581.
[23] R.K. Shah, “Thermal entry length solutions for the circular tube and
parallel plates”, Proceedings of 3rd National Heat and Mass Transfer
Conference, vol. 1, Indian Institute of Technology, Bombay, 1975, p.
HMT-11-75.
[24] G. V. Hadjisophocleous, an J. E. S. Venart , “Predicting the transient
natural convection in enclosures of arbitrary geometry using a
nonorthogonal numerical model”, Numer. Heat Transfer A, No. 13,
1998, pp 373–392.
[25] R.K. Tiwari and M.K. Das, “Heat transfer augmentation in a two-sided
lid-driven differentially heated square cavity utilizing nanofluids”, Int. J.
Heat Mass Transfer, No. 50, 2007, pp 2002–2018.
[26] C.L. Kuang and A. Violi, “Natural convection heat transfer of nanofluids
in a vertical cavity: Effects of non-uniform particle diameter and
temperature on thermal conductivity.”, Int. J. Heat and Fluid Flow, No.
31, 2010, pp 236–245.