Avicelase Production by a Thermophilic Geobacillus stearothermophilus Isolated from Soil using Sugarcane Bagasse

Studies were carried out on the comparative study of the production of Avicelase enzyme using sugarcane bagasse-SCB in two different statuses (i.e. treated and untreated SCB) by thermophilic Geobacillus stearothermophilus at 50ºC. Only four thermophilic bacterial isolates were isolated and assayed for Avicelase production using UntSCB and TSCB. Only one isolate selected as most potent and identified as G. stearothermophilus used in this study. A specific endo-β-1,4-D-glucanase (Avicelase EC 3.2.1.91) was partially purified from a thermophilic bacterial strain was isolated from different soil samples when grown on cellulose enrichment SCB substrate as the sole carbon source. Results shown that G. stearothermophilus was the better Avicelase producer strain. Avicelase had an optimum pH and temperature 7.0 and 50ºC for both UntSCB and TSCB and exhibited good pH stability between "5-8" and "4-9", however, good temperature stability between (30-80ºC) for UntSCB and TSCB, respectively. Other factors affecting the production of Avicelase were compared (i.e. SCB concentration, inoculum size and different incubation periods), all results observed and obtained were revealed that the TSCB was exhibited maximal enzyme activity in comparison with the results obtained from UntSCB, so, the TSCB was enhancing the Avicelase production.

Identification Common Microbes Observed on Polyester Tufting

Tufting carpet is a very suitable substrate for growing microorganism such as pathogenic microbes, due to the direct touch with human body, long washing periods and laying on the floor; in fact there are 3 major problems: To risk human health, Prepare bad odors and Destruction of the products.. In the presented research, for investigation of presence most common microbes on polyester tufting, first goods laid in a public place (in the corridor fair) for 30 days and the existence of some microbes were investigate on it with two methods of enrichment in nutrient environments such as thioglycolate and noutrunt brath, and shake the dust off the polyester tufting onto cultivation mediums such as blood agar and noutrunt agar. After the microorganism colonics are grown, the colonies were separated and six microbial tests such as cataloes and sitrat were carried out in five phases on the colonics for identifying the varieties of bacteria. As a result of tests, 5 type of bacteria, such as Escherichia coli, staphylococcus saprophytic as were identified. Each of the mentioned bacteria can be seriously harmful for the heath of human.

Haptics Enabled Offline AFM Image Analysis

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

ECG Analysis using Nature Inspired Algorithm

This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

Mucus Secretion Responses to Various Sublethal Copper (II) Concentrations in the Mussel Perna perna

The purpose of this study was to evaluate the use of mucus production as a biomarker. This was done by exposing the mussel Perna perna to various sublethal concentrations of Cu. Mussels are effective as a bioindicator species as they accumulate Cu in their tissues. Differences in mucus production rates were evaluated at different Cu concentrations. The findings of this study indicate that increasing Cu concentrations had a significant effect on the mucus production rates over a 24 hour exposure. There were also significant differences between the mucus production rates at different Cu concentrations (p < 0.05). Thus, mucus is an essential detoxification mechanism.

First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.

Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Assessment of Maternal and Embryo-Fetal Toxicity of Copper Oxide Fungicide

The excessive use of agricultural pesticides and the resulting contamination of food and beds of rivers have been a recurring problem nowadays. Some of these substances can cause changes in endocrine balance and impair reproductive function of human and animal population. In the present study, we evaluated the possible effects of the fungicide cuprous copper oxide Sandoz® on pregnant Wistar rats. They received a daily oral administration of 103 or 3.103 mg/kg of the fungicide from the 6th to the 15th day of gestation. On day 21 of gestation, the maternal and fetal toxicity parameters and indices were determined. The administration of cuprous oxide (Copper Sandoz) in Wistar rats, the period of organogenesis, revealed no evidence of maternal toxicity or embryo at the studied doses.

OWA Operators in Generalized Distances

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.

Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags

Slag sample from copper smelting operation in a water jacket furnace from DRC plant was used. The study intends to determine the effect of cooling in the extraction of base metals. The cooling methods investigated were water quenching, air cooling and furnace cooling. The latter cooling ways were compared to the original as received slag. It was observed that, the cooling rate of the slag affected the leaching of base metals as it changed the phase distribution in the slag and the base metals distribution within the phases. It was also found that fast cooling of slag prevented crystallization and produced an amorphous phase that encloses the base metals. The amorphous slags from the slag dumps were more leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co, 85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in basic medium (NH4OH). The leachability was vice versa for the modified slags by quenching in water which leached 89%Cu with a high selectivity as metal extractions are less than 1% for Co, Zn, Pb and Fe at ambient temperature and pH12. For the crystallized slags, leaching of base metals increased with the increase of temperature from ambient temperature to 60°C and decreased at the higher temperature of 80°C due to the evaporation of the ammonia solution used for basic leaching, the total amounts of base metals that were leached in slow cooled slags were very low compared to the quenched slag samples.

An Integrated Software Architecture for Bandwidth Adaptive Video Streaming

Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.

Graph-based High Level Motion Segmentation using Normalized Cuts

Motion capture devices have been utilized in producing several contents, such as movies and video games. However, since motion capture devices are expensive and inconvenient to use, motions segmented from captured data was recycled and synthesized to utilize it in another contents, but the motions were generally segmented by contents producers in manual. Therefore, automatic motion segmentation is recently getting a lot of attentions. Previous approaches are divided into on-line and off-line, where on-line approaches segment motions based on similarities between neighboring frames and off-line approaches segment motions by capturing the global characteristics in feature space. In this paper, we propose a graph-based high-level motion segmentation method. Since high-level motions consist of several repeated frames within temporal distances, we consider all similarities among all frames within the temporal distance. This is achieved by constructing a graph, where each vertex represents a frame and the edges between the frames are weighted by their similarity. Then, normalized cuts algorithm is used to partition the constructed graph into several sub-graphs by globally finding minimum cuts. In the experiments, the results using the proposed method showed better performance than PCA-based method in on-line and GMM-based method in off-line, as the proposed method globally segment motions from the graph constructed based similarities between neighboring frames as well as similarities among all frames within temporal distances.

Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

High Speed Video Transmission for Telemedicine using ATM Technology

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Faculty Stress at Higher Education: A Study on the Business Schools of Pakistan

Job stress is one of the most important concepts for the today-s corporate as well as institutional world. The current study is conducted to identify the causes of faculty stress at Higher Education in Pakistan. For the purpose, Public & Private Business Schools of Punjab is selected as representative of Pakistan. A sample of 300 faculty members (214 males, 86 females) responded to the survey. Regression analysis shows that the Workload, Student Related issues and Role Conflicts are the major sources contributing significantly towards producing stress. The study also revealed that Private sector faculty members experienced more stress as compared to faculty in Public sector Business Schools. Moreover, females, younger ages, lower designation & low qualification faculty members experience more stress as compared to males, older ages, higher designation and high qualification. The study yield many significant results for the policy makers of Business Institutions.

A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach

In this paper, a single period inventory model with resalable returns has been analyzed in an imprecise and uncertain mixed environment. Demand has been introduced as a fuzzy random variable. In this model, a single order is placed before the start of the selling season. The customer, for a full refund, may return purchased products within a certain time interval. Returned products are resalable, provided they arrive back before the end of the selling season and are found to be undamaged. Products remaining at the end of the season are salvaged. All demands not met directly are lost. The probabilities that a sold product is returned and that a returned product is resalable, both imprecise in a real situation, have been assumed to be fuzzy in nature.

Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Fermentative Production and Characterization of Carboxymethyl Bacterial Cellulose Using Date Syrup

In this study, static batch fermentation was used for bacterial cellulose production in date syrup solution (Bx. 10%) at 28°C using Gluconacetobacter. xylinus (PTCC 1734). The physicochemical properties of standard Sigma CMC and the produced carboxymethyl bacterial cellulose (CMBC) were studied using FT-IR spectroscopy, X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM). According to the FT-IR spectra the bands at 1664 and 1431 cm-1 indicate that carboxylic acid groups and carboxylate groups exist on the surface. The SEM imaging of CMBC and CMC carried out in magnification of 1K. Comparing the SEM imaging obviously showed that the ribbon shape in CMC remained but the length of ribbons became shorter while that shape changed to flake shape for CMBC. Determination of the area under XRD patterns demonstrated that the crystallinity amount of CMC was more than that for CMBC (51.08% and 81.84% for CMBC and CMC, respectively).

Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania

The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.