First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.




References:
[1] Chen, T., He., H.L., Church, G.M.: Modeling gene expression with
differential equations. Pac. Symp. Biocomput. 4 (1999) 29-40.
[2] Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman
& Hall/CRC (1994).
[3] Friedman, N., Murphy, K., Russel, S.: Learning the Structure of Dynamic
Probabilistic Networks. In Cooper, G.F. and Moral, S. (eds), Proceedings
of the Fourteenth Conference on Uncertainty in Artifical Intelligence
(UAI). Morgan Kaufmann Publishers, San Francisco, CA (1998).
[4] Friedman, N., Linial, M., Nachman, I., Pe-er, D.: Using Bayesian Networks
to Analyze Expression Data. Journal of Computational Biology
7:3/4 (2000) 601-620.
[5] Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle
switch in Escherichia coli. Nature 403:20 (2000) 339-342.
[6] Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring Genetic
Networks and Identifying Compound Mode of Action via Expression
Profiling. Science 301 (2003) 102-105.
[7] Hartemink, A.J., Gifford, D., Jaakkola, T., Young, R.: Using graphical
models and genomic expression data to statistically validate models of
genetic regulatory networks. Pac. Symp. Biocomp. 6 (2001) 422-433.
[8] Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions
from microarray experiments with dynamic Bayesian networks.
Bioinformatics 19:17 (2003) 2271-2282.
[9] Musmeier, D.: Inferring Dynamic Bayesian Networks with MCMC
(DBmcmc). www.bioss.sari.ac.uk/Ôê╝dirk/software/DBmcmc/ (2003).
[10] Lee, T.I. et al.: Transcriptional Regulatory Networks in Saccharomyces
cerevisiae. Science 298 (2002) 799-804.
[11] Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer-
Verlag, New York (2001).
[12] Murphy, K.P.: Bayes Net Toolbox. Technical Report, MIT Artificial
Intelligence Laboratory (2002).
[13] Perl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, CA, USA (1988).
[14] Schlitt, T., Brazma, A.: Modelling gene networks at different organizational
levels. FEBS Letters 579 (2005) 1859-1866.
[15] Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Evaluating functional network
inference using simulations of complex biological systems. Bioinformatics
18 (2002) 164-175.
[16] Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances
to Bayesian network inference for generating causal networks from
observational biological data. Bioinformatics 20:18 (2004) 3594-3603.