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Abstract— Inferring the network structure from time series data
is a hard problem, especially if the time series is short and noisy.
DNA microarray is a technology allowing to monitor the mRNA
concentration of thousands of genes simultaneously that produces
data of these characteristics. In this study we try to investigate the
influence of the experimental design on the quality of the result.
More precisely, we investigate the influence of two different types of
random single gene perturbations on the inference of genetic networks
from time series data. To obtain an objective quality measure for
this influence we simulate gene expression values with a biologically
plausible model of a known network structure. Within this framework
we study the influence of single gene knock-outs in opposite to
linearly controlled expression for single genes on the quality of the
infered network structure.

Keywords— Dynamic Bayesian networks, microarray data, struc-
ture learning, Markov chain Monte Carlo.

I. INTRODUCTION

ONSIDERABLE progress has been made in the last
decade in the understanding of the molecular biologi-
cal processes underlying life. This can be attributed first of
all to the technological advances rather than to theoretical
break-throughs which could provide a general mathematical
framework for living-matter comparable to our knowledge in
physics. The technological advances manifest in two major
streams, experimental and computational. The experimental
technologies in modern molecular biology, e.g., microarrays,
proteomics, ChIP-chip, allow nowadays to monitor the beha-
vior of, e.g., the gene expression, on a systems level. Systems
level means, that it is in principle possible to measure, e.g., the
gene expression, of all genes within an organism and not only
some dozen. The resulting amount of information gathered by
these experimental technologies can not be processed without
high-performance computers and efficient algorithms. Two
prominent example of such computer-intensive methods are
the bootstrap algorithm [2] to calculate, e.g., standard errors
or confidence intervals and Markov chain Monte Carlo simu-
lations [11] to sample, e.g., from probability distributions that
are very high dimensional and are otherwise intractable. The
sequential application of these technics, first the experiment
then the computational data analysis, experienced limitations
in the application to the inference of genetic networks based
on high-throughput data [4], [7] due to the inherent difficulty
of the problem.
In this paper we tackle the problem how to design microar-
ray experiments so that computational methods can extract
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more information form the resulting data of the biological
process under investigation. More precisely, we focus on
microarray experiments and computational methods to infer
the network topology of genetic networks, e.g., transcription
regulation networks. We investigate the influence of different
types of random single gene perturbations on the quality of
the infered network structure. To obtain reliable results we
generate the time series of the expression values of a genetic
network with a biologically plausible model. This ensures that
we know the network structure of the genetic network we want
to infer and gives us a clear criterion to judge the estimated
network structure. To our knowledge, our results are the first in
this direction. Existing studies in this context investigated, e.g.,
the appropriate level of description to simulate gene expression
data, the influence of the number of time points, the number of
categories and the interval length between samples [1], [15],
[16], [8], [14].

This paper is organized in the following way: In the next
section we present the model we use to generate biological
plausible data mimicing the process of, e.g., transcription
regulation. In II-B we describe the mathematical framework
of dynamical Bayesian networks we use to infer the network
structure. In section III we present our results and in IV we
finish the article with a discussion and conclusions.

II. MODEL

A. Generation of gene expression data

We generate the gene expression values X! with a linear
model which is very similar to the model suggested by Yu et

Fig. 1. Network topology of our synthetic network. Arrows represent an
excitation between genes and circles an inhibition.
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Fig. 2. Time series of expression values for six genes generated with the
network structure shown in Fig. 1.

al. [16].
Xt = X!+ AX] (1
N9
AX! = > oWy (X! —B;))+el 2)
J

We assume discrete time points ¢ and the expression values
X" of the N, genes are restricted to the continuous interval
[0,1]. This gives the interpretation that gene i is expressed
at time step ¢t if X! = 1 or it is not expressed if X! = 0
The expression values of the genes are updated at every time
step by Eq. 2. The influence of genes on each other is defined
by the coupling matrix W. We assume only three possible
interactions: 1. excitation W;; = 1, 2. inhibition Wij = —1
or 3. independence W+ij = 0. For reasons of simplicity the
strength of an excitation or an inhibition shall be the same
indicated by §. The vector B contains threshold values, e.g.,
for W;; > 0 gene j can only up-regulate gene 4 if X ;—Bj >0
otherwise gene 7 gets down-regulated. The last term in Eq. 2 €
represents Gaussian white noise independently drawn for each
component at each time step from G(u = 0,0 = 3.0). This
is in contrast to Yu et al. [16], because they used noise drawn
from a uniform distribution. The difference between both noise
models might not be dramatic, however, we prefer Gaussian
noise because of absence of more detailed information about
the real situation and its omnipresence in nature. As connecti-
vity between the genes we use two different networks. One is
shown in Fig. 1. This network consists of 9 connected genes.
The arrows indicate excitation the circles inhibition from one
gene to another. The second network has the same structure but
additionally we include 11 genes which have no connections to
other genes at all. This represents a distraction corresponding
to gene in a microarray that are not involved in the process
under investigation. In Fig. 2 we show a simulated time series
of gene expression values for six genes. The time series of
gene 2 is just a random walk, because it does not interact
with any other gene. The feedback loop consisting of genes
1,3,4 and 8 leads to a periodic expression pattern of these
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Fig. 3. Time series of expression values for six genes generated with the

network structure shown in Fig. 1. Gene 2 was knocked-out.
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Fig. 4. Time series of expression values for six genes generated with the
network structure shown in Fig. 1. Gene 2 was linearly increased from O to
1 in 1000 time steps.

genes, because gene 8 represses the expression of gene 1. The
outcome of gene 9 is less obvious, because it receives indirect
input from two genes (2, 5) with random activity.

In this paper we want to investigate the influence of two
different types of perturbations on the gene expression on the
inference of the underlying genetic structure. We perturb the
gene expression by single gene knock-out and by controling
the expression linearly from no expression X; = 0 to expres-
sion X; = 1. This is inspired by the genetic toggle switch
introduced by GARDNER et al. [S]. Fig. 3 and 4 show the
corresponding time series for two examples. In Fig. 3 gene
2 is knocked-out. The periodic patterns of the resulting time
series are dramatically changes. This is because gene 2 can no
longer inhibit the expression of gene 3. In Fig. 4 the expression
of gene 2 was linearly increased over time. Here one can see
the opposite effect, high X, values repress gene 3.
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B. Dynamic Bayesian Networks

A Bayesian network M is a graphical model in form of

a directed acyclic graph (DAG) G together with conditional

probability distributions, depending on parameters ©, for

each node ¢ in the graph that depend only on its parents,

P(n;|Pa¥(n;)) [13]. This provides a graphical representation

of the joint probability distribution of /N random variables n;

by

N

P(n1,na,...,ny) = [ [ P(ni|Paf (n:)) 3)

In the context of genetic networks we identify the random

variables n; with (discretized) expression values X; of genes

and connections between random variables as interactions. The

problem we are facing is to infer the structure of the network

G from given data D, that means we want to maximize the
conditional probability P(G|D).

G = argénax{P(g|D)} 4)
P(G|D) < P(DIG)P(9) 5)

The optimal network structure is denoted by G* and the
posterior distribution P(G|D) is given via the Bayes rule in
Eq. 5 up to a normalizing factor. The likelihood P(D|G) is
obtained by integrating over the parameters of the conditional
probabilities © by

P(DIg) = [ P(DI6.G)P(I0)d0 ®)

It was suggested [8] that the maximum a-posteriori (MAP)
approach Eq. 4 is not the most efficient if the available data are
incomplete. Instead, sampling from the posterior probability
Eq. 5 results in a collection of networks with comparable
quality rather than just in a single network [8]. The problem
with this approach is that sampling from the posterior is
not directly possible because the denominator can only be
calculated if the size of the graph is very small. However,
this can be overcome by applying a Markov chain Monte
Carlo simulation (MCMC) [11]. Here we use the algorithm
of Metropolis-Hastings (MH). This algorithm is based on
local modifications of the old structure G4 leading to a
new structure G,,.,,. Possible local modifications are to delete,
reverse or add an edge to the graph. If the new structure
is accepted or rejected is decided based on the following
criterion,

P(gnew‘p) T(goldlgnew)
P(gold‘D) T(gnew|gold)

The transition probabilities T'(G’|G) are given by 1/#G. Here
#G denotes the number of possible structures which can be
obtained by the allowed local modifications (delete, reverse or
add an edge). For more technical details about the algorithms
the reader is refered to HUSMEIER [8].

So far we discussed only Bayesian networks. This class of
graphical models is restricted to acyclic graphs as mentioned
above. However, one characteristic property of genetic net-
works is that they can contain feedback loops. For example in
Fig. 1 the genes 1, 3,4 and 8 are forming a feedback loop. This

(N

Paccept = mm{ 17

limitation of Bayesian networks can be overcome by using
dynamic Bayesian networks [3]. Dynamic Bayesian networks
are directed graphs together with conditional probability dis-
tributions which can contain cycles. Practically, we solve the
problem to determine the structure of the network which fits
best to the data by unfolding the dynamic Bayesian network
in time. This results in a normal Bayesian network that can
be treated in the way described before.

ITI. RESULTS

The major objective of this paper is to study the influence
of two different gene perturbation strategies on the quality
of the infered network structure. To make our simulations
biologically realistic we allow only the observation of short
time series (20 time points) and the perturbation of only 5
genes. More precisely, e.g., we knock-out gene 4 then we
simulate the gene expression levels according to Eq. 1 and 2
for 100 time steps but observe the expression values X; only
every 5-th time step. This results in 20 measurement that are
used to infer the network structure. Because microarrays do not
only contain genes which are relevant for a certain biological
process under investigation, but contain also a certain number
of genes which are not involved in the pathway we want
to infer, we repeat our simulations for the identical network
structure in Fig. 1, but add additionally 11 genes as destructors
which have no connection to any other gene in the network.

A. Single gene perturbations

The results for the single gene knock-out experiments are
shown in the first and third figure in 5 and the corresponding
results for the controlled expressions in the second and forth
figure in 5. The first two figures correspond to the network in
Fig. 1 with 9 genes the following two includes additionally 11
genes as destructors. The results are visualized by the receiver
operator characteristics (ROC) curves. A ROC curve plots
the sensitivity = T P/(T P+ F'N) against the complementary
specificity =1 — TN/(T'N + FP) = FP/(TN + FP). Due
to the fact, that we approximated the posterior distribution
P(G|D) in Eq. 5 by MCMC simulation rather than determined
its corresponding MAP we have only probabilities for the
presence of an edge in a network [8]. That means, we have to
choose a threshold « € [0, 1] if we decide to accept an edge,

W[ 1 POVD) >y
A 0 P(WU"D) <7

Hence, the sensitivity as well as the complementary specifity
depend on « implicitly. With other words, the ROC curves
shown in Fig. 5 are parameterized by 7. The diagonal shown
as dashed line in Fig. 5 corresponds to a completely random
prediction.

®)

AUROC values | knock-out | linear control
9 genes 0.78 0.76
20 genes 0.66 0.63
TABLE 1

THE AREA UNDER THE ROC CURVE FOR THE RESULTS IN FIG. 5.
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Fig. 5. From top to bottom: 1. Network with 9 genes and knock-out
perturbations. 2. Network with 9 genes and linear controlled expression
perturbations. 3. Network with 20 genes and knock-out perturbations. 4.
Network with 20 genes and linear controlled expression perturbations.

As expected the larger the network the more difficult is
the structure to infer. This can be seem by visual comparison
of the figures or by calculation the values of the area under
the ROC curve (AUROC) which are given in table 1. In
general, the larger the AUROC value is the better is the
quality of the infered network. A comparison between the two
types of perturbations reveals that the single gene knock-out
experiments give slightly better results than the linear control
of genes.

IV. CONCLUSIONS

In this paper we investigated the influence of two different
types of random single gene perturbations on the quality of
the inference of the underlying genetic network. We generated
biologically realistic time series mimicing the expression va-
lues of genes and perturbed the system by knocking genes
out or controlling the expression values linearly from not
expressed to expressed. To infer the network structure based on
the discretized time series of 20 time points and 5 different
perturbations we applied MCMC simulation to estimate the
posterior distribution of the network structures for the given
data. Our results reveal that there is only a minor influence
of the perturbation type on the quality of the inference. The
single gene knock-out experiments give slightly better results
for the network consisting of 9 as well as 20 genes. This
could have three reasons: First, we selected the perturbed
genes randomly. Intuitively, if the network structure would be
know in advance one should always be able to decide what
kind of perturbation provides the most information gain for
the inference of the network in combination with the utilized
algorithm. However, if the structure is completely unknown
how could we make such a decision? For example, GARDNER
et al. [6] demonstrated for the known SOS pathway in E.
coli that induced over-expression of single genes is sufficient
to infer the underlying structure to a high degree. Second,
the linear expression control over the complete time interval
of the measurement is not too different from the knock-out
perturbation. At the beginning the expression values might be
comparable in its influence on other genes with a knock-out
whereas at a later stage (after about 4/5 of the observation
time, see Fig. 4) the gene appears to other genes as completely
expressed. However, this time period could be too short to have
an efficient influence. To investigate this effect one could study
the influence of a ramp function with varying slope. Third,
there is no difference between both types of perturbations.
We are of the opinion that for an sufficient amount of data
available about the underlying system there should be not
much difference between both perturbation strategies. Howe-
ver, data about biological systems, e.g., transcription regulation
networks, do not fulfill this condition, because the possible
state space of expression values can only be sampled sparsely.
In this case we would expect differences. It might be possible
that the number of different perturbations used (5) in contrast
to the total number of genes in the network (9 and 20) is too
high bringing us near to the situation of sufficient data. Further
studies about networks containing more connected genes and
the influence of the number of experiments on the quality of
network inference will shed light on this point.
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Our results are the first investigating the influence of the
perturbation strategy on the quality of the infered genetic
network for time series data from biologically plausible si-
mulations. This completes studies about the appropriate level
of description to simulate gene expression data, the influence
of the number of time points, the number of categories
and the interval length between samples [1], [15], [16], [8],
[14]. In general, we think that simulation studies can help
to design more efficient high-throughput experiments leading
themselves to a more efficient computational analysis of the
resulting data.
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