Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel

Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.

Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model

Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.

Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image

In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.

Development of Neural Network Prediction Model of Energy Consumption

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Infrastructure Planning in Scania a Discourse Analytical Approach to the Concepts of Regional Development and Sustainability in the Planning Process

The paper applies a discourse analytical approach to investigate important concepts influencing the infrastructure planning process in the region of Scania in southern Sweden. Two discourses, one concerning regional development and one concerning sustainability are identified, discussed and contrasted. It is argued that the perceptions of problems and their suggested solutions related to transportation are based on specific ideas, in turn dependent on the importance given to certain concepts, such as regional enlargement, Scania as a transit region, the national environmental quality goals and regional attractiveness. These concepts, their underlying meaning structures and their relevance for the infrastructure planning process are analyzed. The handling of conflicting interests in the planning process, and the possible implications this may have is also discussed. The results indicate that the regional development discourse is dominant and although the solutions to the problems caused by transport are framed in similar ways in the two discourses a harmonization between conflicting goals is proving difficult to achieve.

Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Strategies for Development of Information Society in Montenegro

Creation of information society, or in other words, a society based on knowledge, has wide consequences, both on individual and complete society, and in general – on a economy of one country. Development and implementation of ICT represents a stimulant for economic growth. On individual level, knowledge, skills and information gathered using ICT, are expanding individual possibilities of persons, enabling them to have access to timely sensitive information, such as market prices or investment conditions, possibilities to access Government-s or private development funds, etc. By doing so, productivity is increased both on individual and national level and therefore social wellbeing in general. In one word, creation of information society - a knowledge society is happening. This work will describe challenges and strategies that will follow the development as well as obstacles in creating information society – knowledge society in Montenegro.

Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil

This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.

Environmental Responsibility and Firm Performance: Evidence from Nigeria

The objective of this paper is to establish a possible relationship between sustainable business practice and firm performance. Using a field survey methodology, a sample of sixty manufacturing companies in Nigeria was studied. The firms were categorised into two groups, environmentally 'responsible' and 'irresponsible' firms. An investigation was undertaken into the possible relationship between firm performance and three selected indicators of sustainable business practice: employee health and safety (EHS), waste management (WM), and community development (CD), common within the 30 'responsible' firms. Findings from empirical results reveal that the sustainable practices of the 'responsible' firms are significantly related with firm performance. In addition, sustainable practices are inversely related with fines and penalties. The paper concludes that, within the Nigerian setting at least, sustainability affects corporate performance and sustainability may be a possible tool for corporate conflict resolution as evidenced in the reduction of fines, penalties and compensations. The paper therefore recommends research into the relationship between sustainability and conflict management.

A Study on Local Wisdom towards Career Building of People in Kamchanoad Community

This research gathered local wisdom towards career building of people in Kamchanoad Community, Baan Muang sub-district, Baan Dung district, Udon Thani province. Data was collected through in-depth interviews with village headmen, community board, teachers, monks, Kamchanoad forest managers and revered elderly aged over 60 years old. All of these 30 interviewees have resided in Kamchanoad Community for more than 40. Descriptive data analysis result revealed that the most prominent local wisdom of Kamchanoad community is their beliefs and religion. Most people in the community have strongly maintained local tradition, the festival of appeasing Chao Pu Sri Suttho on the middle of the 6th month of Thai lunar calendar which falls on the same day with Vesak Day. 100 percent of the people in this community are Buddhist. They believe that Naga, an entity or being, taking the form of a serpent, named “Sri Suttho” lives in Kamchanoad forest. The local people worship the serpent and ask for blessings. Another local wisdom of this community is Sinh fabric weaving.

Classification Control for Discrimination between Interictal Epileptic and Non – Epileptic Pathological EEG Events

In this study, the problem of discriminating between interictal epileptic and non- epileptic pathological EEG cases, which present episodic loss of consciousness, investigated. We verify the accuracy of the feature extraction method of autocross-correlated coefficients which extracted and studied in previous study. For this purpose we used in one hand a suitable constructed artificial supervised LVQ1 neural network and in other a cross-correlation technique. To enforce the above verification we used a statistical procedure which based on a chi- square control. The classification and the statistical results showed that the proposed feature extraction is a significant accurate method for diagnostic discrimination cases between interictal and non-interictal EEG events and specifically the classification procedure showed that the LVQ neural method is superior than the cross-correlation one.

Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Development, Displacement and Rehabilitation: An Action Anthropological Study on Kovvada Reservoir in West Godavari Agency of Andhra Pradesh, India

This paper discusses the issue of tribal development, displacement, rehabilitation and resettlement policies, and implementation in the agency (scheduled / tribal) areas of the West Godavari District, Andhra Pradesh State, India. This study is based on action anthropological approach, conducted among the displaced tribal communities i.e. Konda Reddis and Nayakapods of this region, under the 'Kovvada Reservoir' Project. These groups are traditionally shifting cultivators and popularly known as the Primitive Tribal Groups (PTGs) in the government records. This paper also focuses on the issues of tribal displacement and land alienation due to construction of the Kovvada reservoir, without proper rehabilitation and resettlement, although there are well defined guidelines, procedures and norms for the rehabilitation of Project Affected Persons (PAPs). It is necessary to begin with, to provide an overview of the issues in tribal development and policies related to displacement and rehabilitation in the Indian context as a background to the Kovvada Reservoir Project, the subject of this study.

Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

Piecewise Interpolation Filter for Effective Processing of Large Signal Sets

Suppose KY and KX are large sets of observed and reference signals, respectively, each containing N signals. Is it possible to construct a filter F : KY → KX that requires a priori information only on few signals, p  N, from KX but performs better than the known filters based on a priori information on every reference signal from KX? It is shown that the positive answer is achievable under quite unrestrictive assumptions. The device behind the proposed method is based on a special extension of the piecewise linear interpolation technique to the case of random signal sets. The proposed technique provides a single filter to process any signal from the arbitrarily large signal set. The filter is determined in terms of pseudo-inverse matrices so that it always exists.

Stabilization of Angular-Shaped Riprap under Overtopping Flows

Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.

Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles

In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.