Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Track Profile

The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods that we use.

Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Design of a Compact Herriott Cell for Heat Flux Measurement Applications

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

The Threats of Deforestation, Forest Fire, and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia

A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.

Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Organic Nutrients

Salinity is one of the major factors limiting crop production in an arid environment. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. So it is implacable to either search for salinity enhancement of soybean plants. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine as well as, compost application on soybean plants grown under salinity stress. The experiment was conducted under greenhouse conditions at the Graduate School of Biosphere Science Laboratory of Hiroshima University, Japan in 2011. The experiment was designed as a spilt-split plot based on randomized complete block design with four replications. The treatments could be summarized as follows; (i) salinity concentrations (0 and 15 mM), (ii) compost treatments (0 and 24 t ha-1) and (iii) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Results indicated that salinity stress induced reduction in growth and physiological aspects (dry weight per plant, chlorophyll content, N and K+ content) of soybean plant compared with those of the unstressed plants. On the other hand, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Special attention was paid to, the tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved K+, and proline accumulation. While, significantly decreased electrolyte leakage ratio and Na+ content. These results clearly demonstrate that harmful effect of salinity could reduce on growth aspects of soybean. Consequently, exogenous osmoprotectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance of soybean in the drylands.

Food Security in Nigeria: An Examination of Food Availability and Accessibility in Nigeria

As a basic physiology need, threat to sufficient food production is threat to human survival. Food security has been an issue that has gained global concern. This paper looks at the food security in Nigeria by assessing the availability of food and accessibility of the available food. The paper employed multiple linear regression technique and graphic trends of growth rates of relevant variables to show the situation of food security in Nigeria. Results of the tests revealed that population growth rate was higher than the growth rate of food availability in Nigeria for the earlier period of the study. Commercial bank credit to agricultural sector, foreign exchange utilization for food and the Agricultural Credit Guarantee Scheme Fund (ACGSF) contributed significantly to food availability in Nigeria. Food prices grew at a faster rate than the average income level, making it difficult to access sufficient food. It implies that prior to the year 2012; there was insufficient food to feed the Nigerian populace. However, continued credit to the food and agricultural sector will ensure sustained and sufficient production of food in Nigeria. Microfinance banks should make sufficient credit available to smallholder farmer. Government should further control and subsidize the rising price of food to make it more accessible by the people.

Synchronization of Semiconductor Laser Networks

In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interest case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulate by Matlab. These results are applicable to private communication.

A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System

This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.

Implementation of a Web-Based Wireless ECG Measuring and Recording System

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Assessment of Procurement-Demand of Milk Plant Using Quality Control Tools: A Case Study

Milk is considered as an essential and complete food. The present study was conducted at Milk Plant Mohali especially in reference to the procurement section where the cash inflow was maximum, with the objective to achieve higher productivity and reduce wastage of milk. In milk plant it was observed that during the month of Jan-2014 to March-2014 the average procurement of milk was Rs. 4, 19, 361 liter per month and cost of procurement of milk is Rs 35/- per liter. The total cost of procurement thereby equal to Rs. 1crore 46 lakh per month, but there was mismatch in procurementproduction of milk, which leads to an average loss of Rs. 12, 94, 405 per month. To solve the procurement-production problem Quality Control Tools like brainstorming, Flow Chart, Cause effect diagram and Pareto analysis are applied wherever applicable. With the successful implementation of Quality Control tools an average saving of Rs. 4, 59, 445 per month is done.

Worm Gearing Design Improvement by Considering Varying Mesh Stiffness

A new approach has been developed to estimate the load share and distribution of worm gear drives, and to calculate the instantaneous tooth meshing stiffness. In the approach, the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well-established formulae of spur gear loading and stresses. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. Based on the slicing method introduced in this study, the instantaneous meshing stiffness and load share are obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.

Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Conceptualization of Value Co-Creation for Shrimp Products in Bangladesh

For the shrimp companies to remain relevant to its local and international consumers, they must offer new shrimp product and services. It must work actively not just to create value for the consumer, but to involve the consumer in co-creating value for shrimp product innovation in the market. In this theoretical work, we conceptualize the business concept of value co-creation in the context of shrimp products, and propose a framework of value co-creation for shrimp product innovation in shrimp industries. With guidance on value co-creation in in shrimp industry, and shrimp value chain actors mapped to the co-creation cycle, companies can use the framework to offer new shrimp product to consumer communities. Although customer co-creation is known approach in the world, it is not commonly used by the companies in Bangladesh. This paper makes an original contribution by conceptualizing co-creation and set the examples of best co-creation practices in food sector. The results of the study provide management with guidelines for successful co-creation projects with an innovation- and market-oriented approach. The framework also provides a basis for further research in this area.

Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area

Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-energy increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids.

Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

In Automotive Industry, sliding door systems that are also used as body closures are safety members. Extreme product tests are realized to prevent failures in design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for design process. These analyses are used before production of prototype for validation of design according to customer requirement. In result of this, substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. Cheaper model can be created by selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then optimum combination was achieved.

Modeling Child Development Factors for the Early Introduction of ICTs in Schools

One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.

Impact of Disposed Drinking Water Sachets in Damaturu, Yobe State, Nigeria

Damaturu is the capital of Yobe State in northeastern Nigeria where civic amenities and facilities are not adequate even after 24 years of its existence. The volatile security and political situations are most significant causes for the same. The basic facility for the citizens in terms of drinking water and electricity are not available. For the drinking water, they have to rely on personal boreholes or the filtered borehole waters available in packaged sachets in market. The present study is concerned with environmental impact of indiscriminate disposal of drinking synthetic polythene water sachets in Damaturu. The sachet water is popularly called as “pure water”, but its purity is questionable. Increased production and consumption of sachet water has led to indiscriminate dumping and disposal of empty sachets leading to serious environmental threat. The evidence of this is seen for sachets littering the streets and the drainages blocked by ‘blocks’ of water sachet waste. Sachet water gained much popularity in Nigeria because the product is convenient for use, affordable and economically viable. The present study aims to find out the solution to this environmental problem. The fieldbased study has found some significant factors that cause environmental and socio economic effect due to this. Some recommendations have been made based on research findings regarding sustainable waste management, recycling and re-use of the non-biodegradable products in society.