A New Efficient RNS Reverse Converter for the 4-Moduli Set 

In this paper, we propose a new efficient reverse converter for the 4-moduli set {2n, 2n + 1, 2n − 1, 22n+1 – 1} based on a modified Chinese Remainder Theorem and Mixed Radix Conversion. Additionally, the resulting architecture is further reduced to obtain a reverse converter that utilizes only carry save adders, a multiplexer and carry propagate adders. The proposed converter has an area cost of (12n + 2) FAs and (5n + 1) HAs with a delay of (9n + 6)tFA + tMUX. When compared with state of the art, our proposal demonstrates to be faster, at the expense of slightly more hardware resources. Further, the Area-Time square metric was computed which indicated that our proposed scheme outperforms the state of the art reverse converter.

MOSFET Based ADC for Accurate Positioning of Control Valves in Industry

This paper presents MOSFET based analog to digital converter which is simple in design, has high resolution, and conversion rate better than dual slope ADC. It has no DAC which will limit the performance, no error in conversion, can operate for wide range of inputs and never become unstable. One of the industrial applications, where the proposed high resolution MOSFET ADC can be used is, for the positioning of control valves in a multi channel data acquisition and control system (DACS), using stepper motors as actuators of control valves. It is observed that in a DACS having ten control valves, 0.02% of positional accuracy of control valves can be achieved with the data update period of 250ms and with stepper motors of maximum pulse rate 20 Kpulses per sec. and minimum pulse width of 2.5 μsec. The reported accuracy so far by other authors is 0.2%, with update period of 255 ms and with 8 bit DAC. The accuracy in the proposed configuration is limited by the available precision stepper motor and not by the MOSFET based ADC.

Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Steam reforming is industrially important as it is  incorporated in several major chemical processes including the  production of ammonia, methanol, hydrogen and ox alcohols. Due to  the strongly endothermic nature of the process, a large amount of heat  is supplied by fuel burning (commonly natural gas) in the furnace  chamber. Reaction conversions, tube catalyst life, energy  consumption and CO2 emission represent the principal factors  affecting the performance of this unit and are directly influenced by  the high operating temperatures and pressures.  This study presents a simulation of the performance of the  reforming of methane in a primary reformer, through a developed  empirical relation which enables to investigate the effects of  operating parameters such as the pressure, temperature, steam to  carbon ratio on the production of hydrogen, as well as the fraction of  non converted methane.  It appears from this analysis that the exit temperature Te, the  operating pressure as well the steam to carbon ratio has an important  effect on the reforming of methane.  

A New Self-Tuning Fuzzy PD Controller of a BDFIG for Wind Energy Conversion

This paper presents a new control scheme to control a brushless doubly fed induction generator (BDFIG) using back-to-back PWM converters for wind power generation. The proposed control scheme is a New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC). The goal of BDFIG control is to achieve a similar dynamic performance to the doubly fed induction generator (DFIG), exploiting the well-known induction machine vector control philosophy. The performance of NSTFPDC controller has been investigated and compared with the two controllers, called Proportional–Integral (PI) and PD-like Fuzzy Logic controller (PD-like FLC) based BDFIG. The simulation results demonstrate the effectiveness and the robustness of the NSTFPDC controller.

Urban Sprawl and the Loss of Peri-Urban Land in Kumasi, Ghana

Kumasi is Ghana’s second largest and fastest growing city with an annual population growth rate of 5.4 percent. A major result of this phenomenon is a growing sprawl at the fringes of the city. This paper assesses the nature, extent and impact of sprawl on Kumasi and examines urban planning efforts at addressing this phenomenon. Both secondary and empirical data were collected from decentralized government departments of the Kumasi Metropolitan Assembly and residents of some sprawling communities. The study reveals that sprawl in the metropolis is rapidly consuming fringe rural communities. This situation has weakened effective management of the metropolis causing problems such as congestion and conversion of peri-urban land into residential use without ancillary infrastructure and social services. The paper recommends effective and timely planning and provision of services as well as an overall economic development and spatial integration through regional planning as a way of achieving a long term solution to sprawl.

Development of Efficient Fungal Biomass-Degrading Enzyme Mixtures for Saccharification of Local Lignocellulosic Feedstock

Conversion of lignocellulosic biomass is the basis process for production of fuels, chemicals and materials in the sustainable biorefinery industry. Saccharification of lignocellulosic biomass is an essential step which produces sugars for further conversion to target value-added products e.g. bio-ethanol, bio-plastic, g-valerolactone (GVL), 5-hydroxymethylfuroic acid (HMF), levulinic acid, etc. The goal of this work was to develop an efficient enzyme for conversion of biomass to reducing sugar based on crude fungal enzyme from Chaetomium globosum BCC5776 produced by submerged fermentation and evaluate its activity comparing to a commercial Acremonium cellulase. Five local biomasses in Thailand: rice straw, sugarcane bagasse, corncobs, corn stovers, and palm empty fruit bunches were pretreated and hydrolyzed with varying enzyme loadings. Saccharification of the biomass led to different reducing sugar levels from 115 mg/g to 720 mg/g from different types of biomass using cellulase dosage of 9 FPU/g. The reducing sugar will be further employed as sugar feedstock for production of ethanol or commodity chemicals. This work demonstrated the use of promising enzyme candidate for conversion of local lignocellulosic biomass in biorefinery industry.

Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (

A New Approach to Design an Efficient CIC Decimator Using Signed Digit Arithmetic

Any digital processing performed on a signal with larger nyquist interval requires more computation than signal processing performed on smaller nyquist interval. The sampling rate alteration generates the unwanted effects in the system such as spectral aliasing and spectral imaging during signal processing. Multirate-multistage implementation of digital filter can result a significant computational saving than single rate filter designed for sample rate conversion. In this paper, we presented an efficient cascaded integrator comb (CIC) decimation filter that perform fast down sampling using signed digit adder algorithm with compensated frequency droop that arises due to aliasing effect during the decimation process. This proposed compensated CIC decimation filter structure with a hybrid signed digit (HSD) fast adder provide an improved performance in terms of down sampling speed by 65.15% than ripple carry adder (RCA) and reduced area and power by 57.5% and 0.01 % than signed digit (SD) adder algorithms respectively.

Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nanotechnological initiatives in improvement of such processes. Considered ideas of role of nanoparticles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless method of solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities was developed and it excels known methods of direct iron reduction from iron ores and metallurgical slimes.

Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

The efficiency of heavy metals removal from sewage  sludge in bioleaching processes with heterotrophic, chemoautotrophic  (sulphur-oxidizing) sludge cenoses and chemical leaching (in  distilled water, weakly acidic or alkaline medium) was compared.  The efficacy of heavy metals removal from sewage sludge varies  from 83 % (Zn) up to 14 % (Cr) and follows the order: Zn > Mn > Cu  > Ni > Co > Pb > Cr. The advantages of metals bioleaching process  at heterotrophic metabolism were shown. A new process for  bioconversation of sewage sludge into fertilizer at middle  temperatures after partial heavy metals removal was developed. This  process is based on enhancing vital ability of heterotrophic  microorganisms by adding easily metabolized nutrients and synthesis  of metabolites by growing sludge cenoses. These metabolites possess  the properties of heavy metals extractants and flocculants which  provide the enhancement of sludge flocks sedimentation. The process  results in biomineral fertilizer of prolonged action with immobilized  sludge bioelements. The fertilizer satisfies the EU limits for the  sewage sludge of agricultural utilization. High efficiency of the  biomineral fertilizer obtained has been demonstrated in vegetation  experiments.  

Thermochemical Conversion: Jatropha curcus in Fixed Bed Reactor Using Slow Pyrolysis

Thermochemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)

Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Graft Copolymerization of Methyl Methacrylate onto Cellulose in Homogeneous Medium – Effect of Solvent and Initiator

Homogeneous graft copolymerization of methyl methacrylate (MMA) onto cellulose was carried out in N, N – dimethyl acetamide/LiCl (DMAc/LiCl) and dimethyl sulfoxide/ paraformaldehyde (DMSO/PF) solvent system taking ceric ammonium nitrate (CAN), benzoyl peroxide (BPO) and tin (II)-2-ethyl hexanoate [Sn(Oct)2] as initiators. Different grafting parameters like graft yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions of temperature, time, and variation of the amount of monomer and initiator. The viscosity average molecular weight of grafted PMMA and number of grafts per cellulose chain were also calculated. The products were characterized by FT-IR and 1H-NMR analyses and possible reaction mechanisms were deduced. Thermal degradation of the grafted products was also studied by thermo-gravimetric analysis (TG) and differential thermo-gravimetry (DTG).

Influence of Overfeeding on Productive Performance Traits, Foie Gras Production, Blood Parameters, Internal Organs, Carcass Traits, and Mortality Rate in Two Breeds of Ducks

A total of 60 male mule ducks and 60 male Muscovy ducks were allotted into three groups (n = 20) to estimate the effects of overfeeding (two and four meals) versus ad libitum feeding on productive performance traits, foie gras production, internal organs, and blood parameters. The results show that force-feeding four meals significantly increased (P < 0.01) body weight, weight gain, and gain percentage compared to force-feeding two meals. Both force-feeding regimes (two or four meals) induced significantly higher body weight, weight gain, gain percentage, and absolute carcass weight than ad libitum feeding; however, carcass percentage was significantly higher in ad libitum feeding. Mule ducks had significantly higher weight gain and weight gain percentages than Muscovy ducks. Feed consumption per kilogram of foie gras and per kilogram weight gain was lower for the four-meal than for the two-meal forced feeding regime. Force-feeding four meals induced significantly higher liver weight and percentage (488.96 ± 25.78g, 7.82 ± 0.40%) than force-feeding two meals (381.98 ± 13.60g, 6.42 ± 0.21%). Moreover, feed conversion was significantly higher under forced feeding than under ad libitum feeding (77.65 ± 3.41g, 1.72 ± 0.05%; P < 0.01). Forced feeding (two or four meals) increased all organ weights (intestine, proventriculus, heart, spleen, and pancreas) over ad libitum feeding weights, except for the gizzard; however intestinal and abdominal fat values were higher for four-meal forced feeding than for two-meal forced feeding. Overfeeding did not change blood parameters significantly compared to ad libitum feeding; however, four-meal forced feeding improved the quality of foie gras since it significantly increased the percentage of grade A foie gras (62.5%) at the expense of grades B (33.33%) and C (4.17%) compared with the two-meal forced feeding. The mortality percentage among Muscovy ducks during the forced feeding period was 22.5%, compared to 0% in mule ducks. Liver weight was highly significantly correlated with life weight after overfeeding and certain blood plasma traits.

Wideband Tunable RF Filters for Channel Selection in Crowded Spectral Bands

It is very effective way to utilize a very wide tunable filter in co-existing multi-standards wireless communications environment. Especially, as the long term evolution (LTE) communication era has come, the multi-band coverage is one of the important features required for the RF components. In this paper, we present the frequency conversion technique, and so generate two types of RF filters which are specially designed for the superb tunable ability to support multiple wireless communication standards. With the help of a complex mixing structure, the inherent image signal is suppressed. The RF band-pass filter (BPF) and notch filter achieve 1.8dB and 1.6dB insertion losses and 18 dB and 17 dB attenuations, respectively. The quality factor show greater than 30.

Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation

The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested. 

Coproduction of Fructose and Ethanol from Dates by S. cerevisiae ATCC 36859

Coproduction of fructose and ethanol from dates extract by a glucose-selective S. cerevisiae ATCC 36859 strain has been studied. Various initial sugar concentrations (i.e., 131.4, 315.3, 408.2, and 500.0 g/l) have been tested. The fermentation experiments were performed in a water shaker bath at 30°C and 120 rpm. The results showed that highest yields of fructose (95.0%) and ethanol (72.8%) were achieved for the 131.4 g/l concentration. Increasing the initial concentration to 315.3 g/l resulted in lower yields of fructose (82.2%) and ethanol (61.0%). However, further increase to 408.2 g/l increased the fructose yield (97.5%) at the expense of ethanol yield (42.0%) due to probable substrate inhibitions that resulted in lower glucose conversion. At 500 g initial sugar/l the growth rate of ATCC 36859 was highly inhibited. 

Improving Production Traits for El-Salam and Mandarah Chicken Strains by Crossing II-Estimation of Crossbreeding Effects on Egg Production and Egg Quality Traits

A crossbreeding experiment was carried out between two Egyptian strains of chickens namely Mandarah (MM) and El-Salam (SS). The two purebred strains and their reciprocal crosses (MS and SM) were used to estimate the effect of crossing on egg laying and egg quality parameters, direct additive and maternal additive effects as well as heterosis and direct heterosis percentages for studied traits. Results revealed that SM cross recorded the highest significant averages for most of egg production traits including body weight at sexual maturity (BW1), egg numbers at first 90 days, 42 weeks and 65 weeks of age (EN1, EN2 and EN3; respectively), egg weight at 90 days, 42 weeks of age (EW1 and EW2), egg mass at 90 days, 42 weeks and 65 weeks of age (EM1, EM2 and EM3; respectively), feed conversion ratio to egg production at 90 days , 42 weeks and 65 weeks of age (FCR1, FCR2 and FCR3; respectively), fertility and commercial hatchability percentages. Moreover, SM line reached the age sexual maturity (ASM) and period to the first ten eggs (Pf10 egg) at earlier age than other lines. On the other hand, crossing did not well improve egg quality parameters. Estimates and percentages of direct additive effect (GI) were negative for most of the studied traits except for EN1, EN2, EN3, FCR3, fertility, scientific and commercial hatchability percentages that were positive. But Estimates and percentages of maternal heterosis (Gm) were positive for all the studied traits of egg production, except for BW2, BW3, ASM, Pf10, FCR1, FCR2, FCR3 and scientific hatchability that were negative. Also, positive estimates and percentages of heterosis were recorded for most of egg production and egg quality traits. It was concluded that using of SS strain as a sire line and MM strain as a dam line resulting in best new commercial egg line (SM) which is of great concern for poultry breeder in Egypt.

Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.