Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.

Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry

The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach. This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.

Bio-Ecological Monitoring of Potatoes Stem Nematodes (Ditylenchus destructor Thorne, 1945) in Four Major Potato-Planter Municipalities of Kvemo Kartli (Eastern Georgia) Accompanying Fauna Biodiversity

There has been studied the distribution character of potato stem nematode (Ditylenchus destructor Thorne, 1945) on the potato fields in four municipalities (Tsalka, Bolnisi, Marneuli, Gardabani) of Kvemo Kartli (Eastern Georgia). As a result of scientific research there is stated the extensiveness of pathogens invasion, accompanying composition of fauna species, environmental groups of populations and quantity. During the research process in the studied ecosystems there were registered 160 forms of free-living and Phyto-parasitic nematodes, from which 118 forms are determined as species and 42 as genus. It was found that in almost the entire studied ecosystem there is dominated pathogenic nematodes Ditylenchus destructor. The large number of exemplars (almost uncountable) was found in tubers material of Bolnisi and Gardabani. 

Influence of Vortex Generator on Flow Behavior of Air Stream

  This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.

The Problems of Employment Form Selection of Capital Group Management Team Members in the Light of Chosen Company Management Theories

Managing a capital group is a complex and specific process. It creates special conditions for the introduction of team work organization of managers. The selection of a manager employment form is a problem which gets complicated in case of management teams. The considered possibilities are an employment-based and non-employment managerial contract, which can be based on a thorough action or on formulating definite expectations regarding the results of a manager’s work. The problem of selection between individual and collegiate settlement of managers’ work has been pointed out. The deliberations were based on the assumptions of chosen company management theories, including transactional cost, agency theory, nexus of contracts theory, stewardship theory and theories referring directly to management teams, i.e. Upper echelons theory. 

Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking

There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.

Hydrolysis of Eicchornia crassipes and Egeria densa for Ethanol Production by Yeasts Isolated from Colombian Lake Fúquene

The aquatic plants are a promising renewable energy resource. Lake Fúquene polluting macrophytes, water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.), were saccharifiedby different treatments and fermented to ethanol by native yeasts. Among the tested chemical and biological methods for the saccharification, Pleurotus ostreatus at 10% (m/v) was chosen as the best pre-treatment in both macrophytes (P

Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation

Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results. 

A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations

In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.

A Quantitative Assessment of the Social Marginalization in Romania

The analysis of the spatial disparities of social marginalization is a requirement in the present-day socio-economic and political context of Romania, an East-European state, member of the European Union since 2007, at present faced with the imperatives of the growth of its territorial cohesion. The main objective of this article is to develop a methodology for the assessment of social marginalization, in order to understand the intensity of the marginalization phenomenon at different spatial scales. The article proposes a social marginalization index (SMI), calculated through the integration of ten indicators relevant for the two components of social marginalization: the material component and the symbolical component. The results highlighted a strong connection between the total degree of social marginalization and the dependence on social benefits, unemployment rate, non-inclusion in the compulsory education, criminality rate, and the type of pension insurance.

Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract

In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm. 

Localization for Indoor Service Robot Using Natural Landmark on the Ceiling

In this paper, we present a localization of a mobile robot with localization modules which have two ceiling-view cameras in indoor environments. We propose two kinds of localization method. The one is the localization in the local space; we use the line feature and the corner feature between the ceiling and wall. The other is the localization in the large space; we use the natural features such as bulbs, structures on the ceiling. These methods are installed on the embedded module able to mount on the robot. The embedded module has two cameras to be able to localize in both the local space and the large spaces. The experiment is practiced in our indoor test-bed and a government office. The proposed method is proved by the experimental results.

An Energy Efficient Digital Baseband for Batteryless Remote Control

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Ni Metallization on SiGe Nanowire

The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.

Distance Estimation for Radar Systems Using DS-UWB Signals

In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed distance estimation scheme provides a better estimation performance and a reduced correlation processing time compared with those of the conventional DS-UWB radars.

Efficacy and Stability of Ceramic Powder to Inactivate Avian Influenza Virus

This experiment aims to demonstrate the efficacy of ceramic powder derived from various sources to inactivate avian influenza virus and its possibility to use in the environment. The ceramics used in the present experiment were derived from chicken feces (CF), scallop shell (SS), polyvinyl chloride (PVC) and soybean (SB). All ceramics were mixed with low pathogenic AIV (LPAIV) H7N1, and then kept at room temperature. The recovered virus was titrated onto Madin-Darby canine kidney (MDCK) cells. All ceramics were assessed the inactivation stability in the environment by keeping under sunlight and under wet-dry condition until reached 7 week or 7 resuspension times respectively. The results indicate that all ceramics have excellent efficacy to inactivate LPAIV. This efficacy can be maintained under the simulated condition. The ceramics are expected to be the good materials for application in the biosecurity system at farms.

Effect of Feeding Systems on Meat Goat CLA

The objective of this study was to investigate the effect of tropical forage source and feeding system on fatty acid composition and antioxidant activity in meat goats. Twenty male crossbred goats (Boer x Saanen), were included in the current study and the study design was assigned to be a 2 x 3 factorial in completely randomized design. All goats were slaughtered after 120 days of experimental period. Dietary tropical roughage sources were grass (Mulata II) and legume (Verano stylo). Both types of roughage were offered to the experimental meat goat as 3 feeding regimes; cut-and-carry, silage and grazing. All goats were fed basal concentrate diet at 1.5% of body weight, and they were fed ad libitum the roughages.Chemical composition, fatty acid profile and antioxidation activity of dietary treatments in all feeding system and longissimus dorsi (LD) muscles in all groups were quantified. The results have shown that the fat content in both types of studied roughage sources ranged from about 2.0% to 4.0% of DM and the fatty acid composition of those was mainly C16:0, C18:2n6 and C18:3n3, with less proportion for C18:1n9. The free-radical scavenging activity of the Mulato II was lower than that of the Verano stylo. The free-radical scavenging activity of the Mulato II was lower than that of the Verano stylo. For LD muscle, the fatty acid composition was mainly C16:0, C18:0 and C18:1n9, with less proportion for C18:2n6. The LD muscle of the goats fed with Mulato II and the Verano stylo by grazing had highest free-radical scavenging activity, compared to those fed with cut-and-carry and silage regime, although there were rather high unsaturated fatty acids in LD muscle. Thus, feeding the meat goats with the Mulato II and Verano stylo by grazing would be beneficial effect for consumers to intake high unsaturated fatty acids and lower risk for oxidation from goat meat.

14-Bit 1MS/s Cyclic-Pipelined ADC

This paper presents a 14-bit cyclic-pipelined Analog to digital converter (ADC) running at 1 MS/s. The architecture is based on a 1.5-bit per stage structure utilizing digital correction for each stage. The ADC consists of two 1.5-bit stages, one shift register delay line, and digital error correction logic. Inside each 1.5-bit stage, there is one gain-boosting op-amp and two comparators. The ADC was implemented in 0.18µm CMOS process and the design has an area of approximately 0.2 mm2. The ADC has a differential input range of 1.2 Vpp. The circuit has an average power consumption of 3.5mA with 10MHz sampling clocks. The post-layout simulations of the design satisfy 12-bit SNDR with a full-scale sinusoid input.