Using Environmental Sensitivity Index (ESI) to Assess and Manage Environmental Risks of Pipelines in GIS Environment: A Case Study ofa Near Coastline and Fragile Ecosystem Located Pipeline

Having a very many number of pipelines all over the country, Iran is one of the countries consists of various ecosystems with variable degrees of fragility and robusticity as well as geographical conditions. This study presents a state-of-the-art method to estimate environmental risks of pipelines by recommending rational equations including FES, URAS, SRS, RRS, DRS, LURS and IRS as well as FRS to calculate the risks. This study was carried out by a relative semi-quantitative approach based on land uses and HVAs (High-Value Areas). GIS as a tool was used to create proper maps regarding the environmental risks, land uses and distances. The main logic for using the formulas was the distance-based approaches and ESI as well as intersections. Summarizing the results of the study, a risk geographical map based on the ESIs and final risk score (FRS) was created. The study results showed that the most sensitive and so of high risk area would be an area comprising of mangrove forests located in the pipeline neighborhood. Also, salty lands were the most robust land use units in the case of pipeline failure circumstances. Besides, using a state-of-the-art method, it showed that mapping the risks of pipelines out with the applied method is of more reliability and convenience as well as relative comprehensiveness in comparison to present non-holistic methods for assessing the environmental risks of pipelines. The focus of the present study is “assessment" than that of “management". It is suggested that new policies are to be implemented to reduce the negative effects of the pipeline that has not yet been constructed completely

Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

High Strain Rate Characteristics of the Advanced Blast Energy Absorbers

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.

Observation and Study of Landslides Affecting the Tangier – Oued R’mel Motorway Segment

The motorway segment between Tangier and Oued R’mel has experienced, since the beginning of building works, significant instability and landslides linked to a number of geological, hydrogeological and geothermic factors affecting the different formations. The landslides observed are not fully understood, despite many studies conducted on this segment. This study aims at producing new methods to better explain the phenomena behind the landslides, taking into account the geotechnical and geothermic contexts. This analysis builds up on previous studies and geotechnical data collected in the field. The final body of data collected shall be processed through the Plaxis software for a better and customizable view of the landslide problems in the area, which will help tofind solutions and stabilize land in the area.

Skin Detection using Histogram depend on the Mean Shift Algorithm

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.

A Study of Filmmakers Interaction through Social Exchange Theory

Film, as an art form playing a vital role and is a powerful tool in documenting, influencing and shaping the society. Films are the collective creation of a large number of separate individuals, each contributing with creative input, unique talents, and technical expertise to the project. Recently, the Malaysian Independent (or “Indie") filmmakers have made their presence felt by winning awards at various international film festivals. Working in the digital video (DV) format, a number of independent filmmakers really hit their stride with a range of remarkably strong titles and international recognition has been quick in coming and their works are now regularly in exhibition or in competition, winning many top prizes at prestigious festivals around the world. The interaction factors among crewmembers are emphasized as imperative for group success. An in-depth interview is conducted to analyze the social interactions and exchanges between filmmakers through Social Exchanges Theory (SET). Certainly the new millennium that was marked as the digital technology revolution has changed the face of filmmaking in Malaysia. There is a clear need to study the Malaysian independent cinema especially from the perspective of understanding what causes the independent filmmakers to work so well given all of the difficulties and constraints.

Rehabilitation of Reinforced Concrete Columns

In recent years, rehabilitation has been the subject of extensive research due to increased spending on building work and repair of built works. In all cases, it is absolutely essential to carry out methods of strengthening or repair of structural elements, and that following an inspection analysis and methodology of a correct diagnosis. The reinforced concrete columns are important elements in building structures. They support the vertical loads and provide bracing against the horizontal loads. This research about the behavior of reinforced concrete rectangular columns, rehabilitated by concrete liner, confinement FRP fabric, steel liner or cage formed by metal corners. It allows comparing the contributions of different processes used perspective section resistance elements rehabilitated compared to that is not reinforced or repaired. The different results obtained revealed a considerable gain in bearing capacity failure of reinforced sections cladding concrete, metal bracket, steel plates and a slight improvement to the section reinforced with fabric FRP. The use of FRP does not affect the weight of the structures, but the use of different techniques cladding increases the weight of elements rehabilitated and therefore the weight of the building which requires resizing foundations.

Analysis of a PWM Boost Inverter for Solar Home Application

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Breast Cancer Treatment Evaluation based on Mammographic and Echographic Distance Computing

Accurate assessment of the primary tumor response to treatment is important in the management of breast cancer. This paper introduces a new set of treatment evaluation indicators for breast cancer cases based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The distance principals are applied to pairs of mammograms and/or echograms, recorded before and after treatment, determining a reference point in judging the evolution amount of the studied carcinoma. The obtained numerical results are indeed very transparent and indicate not only the evolution or the involution of the tumor under treatment, but also a quantitative measurement of the benefit in using the selected method of treatment.

Lightweight Mirrors for Space X-Ray Telescopes

Future astronomical projects on large space x-ray imaging telescopes require novel substrates and technologies for the construction of their reflecting mirrors. The mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution. The new materials and technologies must be cost-effective. Currently, the most promising materials are glass or silicon foils. We focused on precise shaping these foils by thermal forming process. We studied free and forced slumping in the temperature region of hot plastic deformation and compared the shapes obtained by the different slumping processes. We measured the shapes and the surface quality of the foils. In the experiments, we varied both heat-treatment temperature and time following our experiment design. The obtained data and relations we can use for modeling and optimizing the thermal forming procedure.

Fuzzy Voting in Internal Elections of Educational and Party Organizations

This article presents a method for elections between the members of a group that is founded by fuzzy logic. Linguistic variables are objects for decision on election cards and deduction is based on t-norms and s-norms. In this election-s method election cards are questionnaire. The questionnaires are comprised of some questions with some choices. The choices are words from natural language. Presented method is accompanied by center of gravity (COG) defuzzification added up to a computer program by MATLAB. Finally the method is illustrated by solving two examples; choose a head for a research group-s members and a representative for students.

Distributed Architecture of an Autonomous Four Rotor Mini-Rotorcraft based on Multi-Agent System

In this paper, we present the recently implemented approach allowing dynamics systems to plan its actions, taking into account the environment perception changes, and to control their execution when uncertainty and incomplete knowledge are the major characteristics of the situated environment [1],[2],[3],[4]. The control distributed architecture has three modules and the approach is related to hierarchical planning: the plan produced by the planner is further refined at the control layer that in turn supervises its execution by a functional level. We propose a new intelligent distributed architecture constituted by: Multi-Agent subsystem of the sensor, of the interpretation and representation of environment [9], of the dynamic localization and of the action. We tested this distributed architecture with dynamic system in the known environment. The autonomous for Rotor Mini Rotorcraft task is described by the primitive actions. The distributed controlbased on multi-agent system is in charge of achieving each task in the best possible way taking into account the context and sensory feedback.

Evaluating the Australian Defense Force Environmental Awareness Training at Shoalwater Bay Training Area, Queensland, Australia

This paper contributes to the field of Environmental Awareness Training (EAT) evaluation in terms of military activities. Environmental management of military activities is a growing concern for defence forces worldwide and the importance of EAT is becoming widely recognized. As one of Australia-s largest landowners, the Australian Defence Force (ADF) is extremely mindful of its duty as a joint environmental manager. It has an integrated Environmental Management System (EMS) to assist environmental management and EAT is an essential part of the ADF EMS model. This paper examines how EAT was conducted during the exercise Talisman Saber in 2009 (TS09) and evaluates its effectiveness, using Shoalwater Bay Training Area (SWBTA), one of the most significant military training areas and a significant protected area in Australia, as a case study. A questionnaire survey conducted showed, overall, that EAT was effective from the perspective of a sample of participants. Recommendations are made for the ADF to refine EAT for future exercises.

Propagation Model for a Mass-Mailing Worm with Mailing List

Mass-mail type worms have threatened to become a large problem for the Internet. Although many researchers have analyzed such worms, there are few studies that consider worm propagation via mailing lists. In this paper, we present a mass-mailing type worm propagation model including the mailing list effect on the propagation. We study its propagation by simulation with a real e¬mail social network model. We show that the impact of the mailing list on the mass-mail worm propagation is significant, even if the mailing list is not large.

An Implementation of EURORADIO Protocol for ERTMS Systems

European Rail Traffic Management System (ERTMS) is the European reference for interoperable and safer signaling systems to efficiently manage trains running. If implemented, it allows trains cross seamlessly intra-European national borders. ERTMS has defined a secure communication protocol, EURORADIO, based on open communication networks. Its RadioInfill function can improve the reaction of the signaling system to changes in line conditions, avoiding unnecessary braking: its advantages in terms of power saving and travel time has been analyzed. In this paper a software implementation of the EURORADIO protocol with RadioInfill for ERTMS Level 1 using GSM-R is illustrated as part of the SR-Secure Italian project. In this building-blocks architecture the EURORADIO layers communicates together through modular Application Programm Interfaces. Security coding rules and railway industry requirements specified by EN 50128 standard have been respected. The proposed implementation has successfully passed conformity tests and has been tested on a computer-based simulator.

King Bhumibol Adulyadej’s “Learn Wisely” Concept: An Application to Instructional Design

This study is about an application of King Bhumibol Adulyadej’s “Learn Wisely” (LW) concept in instructional design and management process at the Faculty of Education, Suan Sunahdha Rajabhat University. The concept suggests four strategies for true learning. Related literature and significant LW methods in teaching and learning are also reviewed and then applied in designing a pedagogy learning module. The design has been implemented in three classrooms with a total of 115 sophomore student teachers. After one consecutive semester of managing and adjusting the process by instructors and experts using collected data from minutes, assessment of learning management, satisfaction and learning achievement of the students, it is found that the effective SSRU model of LW instructional method comprises of five steps.

Comparison of Pore Space Features by Thin Sections and X-Ray Microtomography

Microtomographic images and thin section (TS) images were analyzed and compared against some parameters of geological interest such as porosity and its distribution along the samples. The results show that microtomography (CT) analysis, although limited by its resolution, have some interesting information about the distribution of porosity (homogeneous or not) and can also quantify the connected and non-connected pores, i.e., total porosity. TS have no limitations concerning resolution, but are limited by the experimental data available in regards to a few glass sheets for analysis and also can give only information about the connected pores, i.e., effective porosity. Those two methods have their own virtues and flaws but when paired together they are able to complement one another, making for a more reliable and complete analysis.

Identifying Blind Spots in a Stereo View for Early Decisions in SI for Fusion based DMVC

In DMVC, we have more than one options of sources available for construction of side information. The newer techniques make use of both the techniques simultaneously by constructing a bitmask that determines the source of every block or pixel of the side information. A lot of computation is done to determine each bit in the bitmask. In this paper, we have tried to define areas that can only be well predicted by temporal interpolation and not by multiview interpolation or synthesis. We predict that all such areas that are not covered by two cameras cannot be appropriately predicted by multiview synthesis and if we can identify such areas in the first place, we don-t need to go through the script of computations for all the pixels that lie in those areas. Moreover, this paper also defines a technique based on KLT to mark the above mentioned areas before any other processing is done on the side view.

Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley

Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.

Climate Change Finger Prints in Mountainous Upper Euphrates Basin

Climate change leading to global warming affects the earth through many different ways such as weather (temperature, precipitation, humidity and the other parameters of weather), snow coverage and ice melting, sea level rise, hydrological cycles, quality of water, agriculture, forests, ecosystems and health. One of the most affected areas by climate change is hydrology and water resources. Regions where majority of runoff consists of snow melt are more sensitive to climate change. The first step of climate change studies is to establish trends of significant climate variables including precipitation, temperature and flow data to detect any potential climate change impacts already happened. Two popular non-parametric trend analysis methods, Mann-Kendal and Spearman-s Rho were applied to Upper Euphrates Basin (Turkey) to detect trends of precipitation, temperatures (maximum, minimum and average) and streamflow.