Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory

This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.

Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.

Applying Lean Principles, Tools and Techniques in Set Parts Supply Implementation

Lean, which was initially developed by Toyota, is widely implemented in other companies to improve competitiveness. This research is an attempt to identify the adoption of lean in the production system of Malaysian car manufacturer, Proton using case study approach. To gain the in-depth information regarding lean implementation, an activity on the assembly line called Set Parts Supply (SPS) was studied. The result indicates that by using lean principles, tools and techniques in the implementation of SPS enabled to achieve the goals on safety, quality, cost, delivery and morale. The implementation increased the size of the workspace, improved the quality of assembly and the delivery of parts supply, reduced the manpower, achieved cost savings on electricity and also increased the motivation of manpower in respect of attendance at work. A framework of SPS implementation is suggested as a contribution for lean practices in production system.

Durability of Mortar in Presence of Rice Husk Ash

The purpose of this paper is to investigate the durability of cement mortar in presence of Rice Husk Ash (RHA). The strength and durability of mortar with different replacement level (0%, 10%, 15%, 20%, 25% and 30%) of Ordinary Portland Cement (OPC) by RHA is investigated here. RHA was manufactured from an uncontrolled burning process. Test samples were prepared with river sand of FM 2.73. Samples were kept in controlled environment up to test time. The results show that addition of RHA was shown better results for 20% replacement level than OPC at 90 days. In durability test all samples passed for 20 cycles except 25% and 30% replacement level.

Marital Duration and Sexual Frequency among the Muslim and Santal Couples in Rural Bangladesh: A Cross-Cultural Perspective

Age and sex are biological terms that are socioculturally constructed for marriage and marital sexual behavior in every society. Marriage is a universal norm that makes legitimate sexual behavior between a man and a woman in marital life cycle to gain bio-social purposes. Cross-cultural studies reveal that marital sexual frequency as a part of marital sexual behavior not only varies within the couple-s life cycle, but also varies between and among couples in diverse cultures. The purpose of the study was to compare marital sexual frequency in association with age status and length of marital relationship between Muslim and Santal couples in rural Bangladesh. For this we assumed that (1) Santal culture compared to Muslim culture preferred earlier age at marriage for meeting marital sexual purposes in rural Bangladesh; (2) Marital duration among the Muslim couples was higher than that among the Santal couples; (3) Sexual frequency among the younger couples in both the ethnic communities was higher than the older couples; (4) Sexual frequency across the Muslim couples- marital life cycle was higher than that the Santal couples- marital life cycle. In so doing, 288 active couples (145 for Muslim and 143 for Santal) selected by cluster random sampling were interviewed with questionnaire method. The findings of Independent Samples T Test on age at marriage, current age, marital duration and sexual frequency independently reveal that there were significant differences in sexual frequency not only across the couples- life cycle but also vary between the Muslim and Santal couples in relation to marital duration. The results of Pearson-s Inter- Correlation Coefficients reveal that although age at marriage, current age and marital duration for husband and wife were significantly positive correlated with each other between the communities, there were significantly negative correlation between the age at marriage, current age, marital duration and sexual frequency among the selected couples between the communities.

Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Multivariable Predictive PID Control for Quadruple Tank

In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design.

Investigation of Inert Gas Injection in Steam Reforming of Methane: Energy

Synthesis gas manufacturing by steam reforming of hydrocarbons is an important industrial process. High endothermic nature of the process makes it one of the most cost and heat intensive processes. In the present work, composite effect of different inert gases on synthesis gas yield, feed gas conversion and temperature distribution along the reactor length has been studied using a heterogeneous model. Mathematical model was developed as a first stage and validated against the existing process models. With the addition of inert gases, a higher yield of synthesis gas is observed. Simultaneously the rector outlet temperature drops to as low as 810 K. It was found that Xenon gives the highest yield and conversion while Helium gives the lowest temperature. Using Xenon inert gas 20 percent reduction in outlet temperature was observed compared to traditional case.

A Reconfigurable Distributed Multiagent System Optimized for Scalability

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle

Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.

Customer Loyalty and the Impacts of Service Quality:The Case of Five Star Hotels in Jordan

In the present Jordan hotels scenario, service quality is a vital competitive policy to keep customer support and build great base. Hotels are trying to win customer loyalty by providing enhanced quality services. This paper attempts to examine the impact of tourism service quality dimension in the Jordanian five star hotels. A total of 322 surveys were administrated to tourists who were staying at three branches Marriott hotel in Jordan. The results show that dimensions of service quality such as empathy, reliability, responsiveness and tangibility significantly predict customer loyalty. Specifically, among the dimension of tourism service quality, the most significant predictor of customer loyalty is tangibility. This paper implies that five star hotels in Jordan should also come forward and try their best to present better tourism service quality to win back their customers- loyalty.

The Relationship between the Ramadan Bazaar and the Attraction and Dissemination of Information: A Case of International Tourists

Many people regard food events as part of gastronomic tourism and important in enhancing visitors’ experiences. Realizing the importance and contribution of food events to a country’s economy, the Malaysia government is undertaking greater efforts to promote such tourism activities to international tourists. Among other food events, the Ramadan bazaar is a unique food culture event, which receives significant attention from the Malaysia Ministry of Tourism. This study reports the empirical investigation into the international tourists’ perceptions, attraction towards the Ramadan bazaar and willingness in disseminating the information. Using the Ramadan bazaar at Kampung Baru, Kuala Lumpur as the data collection setting, results revealed that the Ramadan bazaar attributes (food and beverages, events and culture) significantly influenced the international tourist attraction to such a bazaar. Their high level of experience and satisfaction positively influenced their willingness to disseminate information. The positive response among the international tourists indicates that the Ramadan bazaar as gastronomic tourism can be used in addition to other tourism products as a catalyst to generate and boost the local economy. The related authorities that are closely associated with the tourism industry therefore should not ignore this indicator but continue to take proactive action in promoting the gastronomic event as one of the major tourist attractions.

Decentralized Handoff for Microcellular Mobile Communication System using Fuzzy Logic

Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of cellular system. The higher value of hysteresis effectively prevents unnecessary handoffs but causes undesired cell dragging. This undesired cell dragging causes interference or could lead to dropped calls in microcellular environment. The problems are further exacerbated by the corner effect phenomenon which causes the signal level to drop by 20-30 dB in 10-20 meters. Thus, in order to maintain reliable communication in a microcellular system new and better handoff algorithms must be developed. A fuzzy based handoff algorithm is proposed in this paper as a solution to this problem. Handoff on the basis of ratio of slopes of normal signal loss to the actual signal loss is presented. The fuzzy based solution is supported by comparing its results with the results obtained in analytical solution.

Bandwidth Allocation in Mobile ATM Cellular Networks

Bandwidth allocation in wired network is less complex and to allocate bandwidth in wireless networks is complex and challenging, due to the mobility of source end system.This paper proposes a new approach to bandwidth allocation to higher and lower priority mobile nodes.In our proposal bandwidth allocation to new mobile node is based on bandwidth utilization of existing mobile nodes.The first section of the paper focuses on introduction to bandwidth allocation in wireless networks and presents the existing solutions available for allocation of bandwidth. The second section proposes the new solution for the bandwidth allocation to higher and lower priority nodes. Finally this paper ends with the analytical evaluation of the proposed solution.

High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate

This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.

Effects of Adding Fibre on Strength and Permeability of Recycled Aggregate Concrete Containing Treated Coarse RCA

This paper presents the experiment results of investigating the effects of adding various types and proportions of fibre on mechanical strength and permeability characteristics of recycled aggregate concrete (RAC), which was produced with treated coarse recycled concrete aggregate (RCA). Two types of synthetic fibres (i.e., barchip and polypropylene fibre) with various volume fractions were added to the RAC, which was calculated by the weight of the cement. The hardened RAC properties such as compressive strength, flexural strength, ultrasonic pulse velocity, water absorption and total porosity at the curing ages of 7 and 28 days were evaluated and compared with the properties of the control specimens. Results indicate that the treated coarse RCA enhances the mechanical strength and permeability properties of RAC and adding barchip fibre further optimises the results. Adding 1.2% barchip fibre has the best effect on the mechanical strength performance of the RAC.

A Study of Cooperative Co-evolutionary Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem

Flexible Job Shop Problem (FJSP) is an extension of classical Job Shop Problem (JSP). The FJSP extends the routing flexibility of the JSP, i.e assigning machine to an operation. Thus it makes it more difficult than the JSP. In this study, Cooperative Coevolutionary Genetic Algorithm (CCGA) is presented to solve the FJSP. Makespan (time needed to complete all jobs) is used as the performance evaluation for CCGA. In order to test performance and efficiency of our CCGA the benchmark problems are solved. Computational result shows that the proposed CCGA is comparable with other approaches.

Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it and is produced by complete elimination of ordinary Portland cement. This paper documents the assessment of the compressive strength and workability characteristics of low-calcium fly ash based selfcompacting geopolymer concrete. The essential workability properties of the freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and segregation resistance as specified by guidelines on Self Compacting Concrete by EFNARC were satisfied. In addition, compressive strength was determined and the test results are included here. This paper also reports the effect of extra water, curing time and curing temperature on the compressive strength of self-compacting geopolymer concrete. The test results show that extra water in the concrete mix plays a significant role. Also, longer curing time and curing the concrete specimens at higher temperatures will result in higher compressive strength.

Models to Customise Web Service Discovery Result using Static and Dynamic Parameters

This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.