A Reliable FPGA-based Real-time Optical-flow Estimation

Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.

Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.

The Influence of the Commons Structure Modification on the Allocation

The tracing methods determine the contribution the power system sources have in their supplying. The methods can be used to assess the transmission prices, but also to recover the transmission fixed cost. In this paper is presented the influence of the modification of commons structure has on the specific price of transfer. The operator must make use of a few basic principles about allocation. Most tracing methods are based on the proportional sharing principle. In this paper Kirschen method is used. In order to illustrate this method, the 25- bus test system is used, elaborated within the Electrical Power Engineering Department, from Timisoara, Romania.

Compact Model of Dual-Drain MAGFETs Simulation

This work offers a study of new simple compact model of dual-drain Magnetic Field Effect Transistor (MAGFET) including geometrical effects and biasing dependency. An explanation of the sensitivity is investigated, involving carrier deflection as the dominant operating principle. Finally, model verification with simulation results is introduced to ensure that acceptable error of 2% is achieved.

Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems

Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.

The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA

Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.

Watermark Bit Rate in Diverse Signal Domains

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

Extracting Human Body based on Background Estimation in Modified HLS Color Space

The ability to recognize humans and their activities by computer vision is a very important task, with many potential application. Study of human motion analysis is related to several research areas of computer vision such as the motion capture, detection, tracking and segmentation of people. In this paper, we describe a segmentation method for extracting human body contour in modified HLS color space. To estimate a background, the modified HLS color space is proposed, and the background features are estimated by using the HLS color components. Here, the large amount of human dataset, which was collected from DV cameras, is pre-processed. The human body and its contour is successfully extracted from the image sequences.

Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Analysis of Partially Shaded PV Modules Using Piecewise Linear Parallel Branches Model

This paper presents an equivalent circuit model based on piecewise linear parallel branches (PLPB) to study solar cell modules which are partially shaded. The PLPB model can easily be used in circuit simulation software such as the ElectroMagnetic Transients Program (EMTP). This PLPB model allows the user to simulate several different configurations of solar cells, the influence of partial shadowing on a single or multiple cells, the influence of the number of solar cells protected by a bypass diode and the effect of the cell connection configuration on partial shadowing.

Linear Pocket Profile based Threshold Voltage Model for sub-100 nm n-MOSFET

This paper presents a threshold voltage model of pocket implanted sub-100 nm n-MOSFETs incorporating the drain and substrate bias effects using two linear pocket profiles. Two linear equations are used to simulate the pocket profiles along the channel at the surface from the source and drain edges towards the center of the n-MOSFET. Then the effective doping concentration is derived and is used in the threshold voltage equation that is obtained by solving the Poisson-s equation in the depletion region at the surface. Simulated threshold voltages for various gate lengths fit well with the experimental data already published in the literature. The simulated result is compared with the two other pocket profiles used to derive the threshold voltage models of n-MOSFETs. The comparison shows that the linear model has a simple compact form that can be utilized to study and characterize the pocket implanted advanced ULSI devices.

Energy Consumption and Carbon Calculations of Microalgae Biodiesel

At present, the severe oil crisis and greenhouse effect are booming, which is a growing worry for China. Over a long period of study, choosing the development of biological diesel is a feasible way in the desertification region in China. With considering the adaptability of Micro-algae in desertification region and analyzing energy consumption and carbon calculations of Micro-algae biodiesel produced by JJ company , this paper, make the microalgae our optimal choice to develop biological diesel in china's desertification region.

Tuning a Fractional Order PID Controller with Lead Compensator in Frequency Domain

To achieve the desired specifications of gain and phase margins for plants with time-delay that stabilized with FO-PID controller a lead compensator is designed. At first the range of controlled system stability based on stability boundary criteria is determined. Using stability boundary locus method in frequency domain the fractional order controller parameters are tuned and then with drawing bode diagram in frequency domain accessing to desired gain and phase margin are shown. Numerical examples are given to illustrate the shapes of the stabilizing region and to show the design procedure.

Discrete Modified Internal Model Control for a nth-order Plant with an Integrator and Dead-time

This paper deals with a design method of a discrete modified Internal Model Control (IMC) for a plant with an integrator and dead time. If there is a load disturbance in the input or output side of the plant, the proposed control system can eliminate the steady-state error caused by it. The disturbance compensator in this method is simple and its order is low regardless of that of a plant. The simulation studies show that the proposed method has superior performance for a load disturbance rejection and robustness.

Cell Phone: A Vital Clue

Increasing use of cell phone as a medium of human interaction is playing a vital role in solving riddles of crime as well. A young girl went missing from her home late in the evening in the month of August, 2008 when her enraged relatives and villagers physically assaulted and chased her fiancée who often frequented her home. Two years later, her mother lodged a complaint against the relatives and the villagers alleging that after abduction her daughter was either sold or killed as she had failed to trace her. On investigation, a rusted cell phone with partial visible IMEI number, clothes, bangles, human skeleton etc. recovered from abandoned well in the month of May, 2011 were examined in the lab. All hopes pinned on identity of cell phone, for only linking evidence to fix the scene of occurrence supported by call detail record (CDR) and to dispel doubts about mode of sudden disappearance or death as DNA technology did not help in establishing identity of the deceased. The conventional scientific methods were used without success and international mobile equipment identification number of the cell phone could be generated by using statistical analysis followed by online verification. 

Low Power Low Voltage Current Mode Pipelined A/D Converters

This paper presents two prototypes of low power low voltage current mode 9 bit pipelined a/d converters. The first and the second converters are configured of 1.5 bit and 2.5 bit stages, respectively. The a/d converter structures are composed of current mode building blocks and final comparator block which converts the analog current signal into digital voltage signal. All building blocks have been designed in CMOS AMS 0.35μm technology, then simulated to verify proposed concept. The performances of both converters are compared to performances of known current mode and voltage mode switched capacitance converter structures. Low power consumption and small chip area are advantages of the proposed converters.

Optimal DG Placement in Distribution systems Using Cost/Worth Analysis

DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth rate and load forecast uncertainty (LFU) on optimum DG location are studied.

A New Routing Algorithm: MIRAD

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

Fault Localization and Alarm Correlation in Optical WDM Networks

For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.