Abstract: Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.
Abstract: Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.
Abstract: Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.
Abstract: Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.
Abstract: A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e−/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e−/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.
Abstract: In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.
Abstract: Thin ZnO films are deposited on glass substrates via
sol–gel method and dip-coating. The films are prepared from zinc
acetate dehydrate as a starting reagent. After that the as-prepared
ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days).
Nanocrystalline thin films are deposited from various sols. The
effect ZnO sols aging time on the structural and photocatalytic
properties of the films is studied. The films surface is studied by
Scanning Electron Microscopy. The effect of the aging time of the
starting solution is studied in the photocatalytic degradation of
Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments
are conducted upon UV-light illumination and in complete darkness.
The variation of the absorption spectra shows the degradation of RB5
dissolved in water, as a result of the reaction, occurring on the surface
of the films and promoted by UV irradiation. The initial
concentrations of dye (5, 10 and 20 ppm) and the effect of the aging
time are varied during the experiments. The results show, that the
increasing aging time of starting solution with respect to ZnO
generally promotes photocatalytic activity. The thin films obtained
from ZnO sol, which is aged 30 days have best photocatalytic
degradation of the dye (97,22%) in comparison with the freshly
prepared ones (65,92%). The samples and photocatalytic
experimental results are reproducible. Nevertheless, all films exhibit
a substantial activity in both UV light and darkness, which is
promising for the development of new ZnO photocatalysts by sol-gel
method.
Abstract: Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.
The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.
Abstract: The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO2 were smashed in an agate mortar before photocatalytic reactions. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO2, SWNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2or GS/TiO2 was tested.
Abstract: Cu-mesoporous TiO2 is developed for removal acid
odor cooperated with ozone assistance and online- regeneration
system with/without UV irradiation (all weather) in study. The results
showed that Cu-mesoporous TiO2 present the desirable adsorption
efficiency of acid odor without UV irradiation, due to the larger
surface area, pore sizeand the additional absorption ability provided by
Cu. In the photocatalysis process, the material structure also benefits
Cu-mesoporous TiO2 to perform the more outstanding efficiency on
degrading acid odor. Cu also postponed the recombination of
electron-hole pairs excited from TiO2 to enhance photodegradation
ability. Cu-mesoporous TiO2 could gain the conspicuous increase on
photocatalysis ability from ozone assistance, but without any benefit
on adsorption. In addition, the online regeneration procedure could
process the used Cu-mesoporous TiO2 to reinstate the adsorption
ability and maintain the photodegradtion performance, depended on
scrubbing, desorping acid odor and reducing Cu to metal state.
Abstract: New lead-free ferroelectric relaxor ceramics were
prepared by conventional solid-state synthesis in the BaTiO3-Bi2O3-
Y2O3 systems. Some of these ceramics present a ferroelectric relaxor
with transition temperature close to room temperature. These new
materials are very interesting for applications and can replace leadbased
ceramic to prevent the toxic pollutions during the preparation
state. In the other hand, the energy band diagram shows the
potentiality of these compounds for the solar energy conversion.
Thus, some compositions have been tested successfully for H2
production upon visible light. The best activity occurs in alkaline
media with a rate evolution of about 0.15 mL g-1 mn-1 and a quantum
yield of 1% under polychromatic light.
Abstract: The accelerated sonophotocatalytic degradation of
Reactive Red (RR) 120 dye under visible light using dye sensitized
TiO2 activated by ultrasound has been carried out. The effect of
sonolysis, photocatalysis and sonophotocatalysis under visible light
has been examined to study the influence on the degradation rates by
varying the initial substrate concentration, pH and catalyst loading to
ascertain the synergistic effect on the degradation techniques.
Ultrasonic activation contributes degradation through cavitation
leading to the splitting of H2O2 produced by both photocatalysis and
sonolysis. This results in the formation of oxidative species, such as
singlet oxygen (1O2) and superoxide (O2
-●) radicals in the presence of
oxygen. The increase in the amount of reactive radical species which
induce faster oxidation of the substrate and degradation of
intermediates and also the deaggregation of the photocatalyst are
responsible for the synergy observed under sonication. A
comparative study of photocatalysis and sonophotocatalysis using
TiO2, Hombikat UV 100 and ZnO was also carried out.
Abstract: Sol-gel method has been used to fabricate
nanocomposite films on glass substrates composed halloysite clay
mineral and nanocrystalline TiO2. The methodology for the synthesis
involves a simple chemistry method utilized nonionic surfactant
molecule as pore directing agent along with the acetic acid-based solgel
route with the absence of water molecules. The thermal treatment
of composite films at 450oC ensures elimination of organic material
and lead to the formation of TiO2 nanoparticles onto the surface of
the halloysite nanotubes. Microscopy techniques and porosimetry
methods used in order to delineate the structural characteristics of the
materials. The nanocomposite films produced have no cracks and
active anatase crystal phase with small crystallite size were deposited
on halloysite nanotubes. The photocatalytic properties for the new
materials were examined for the decomposition of the Basic Blue 41
azo dye in solution. These, nanotechnology based composite films
show high efficiency for dye’s discoloration in spite of different
halloysite quantities and small amount of halloysite/TiO2 catalyst
immobilized onto glass substrates. Moreover, we examined the
modification of the halloysite/TiO2 films with silver particles in order
to improve the photocatalytic properties of the films. Indeed, the
presence of silver nanoparticles enhances the discoloration rate of the
Basic Blue 41 compared to the efficiencies obtained for unmodified
films.
Abstract: The paper reports the preparation and photocatalytic
activity of ZnO/SnO2 and SnO2 nanoparticles. These nanoparticles
were synthesized by hydrothermal method. The products were
characterized by X-ray diffraction (XRD) and scanning electron
microscopy (SEM). Their grain sizes are about 50-100 nm. The
photocatalytic activities of these materials were investigated for
congo red removal from aqueous solution under UV light irradiation.
It was shown that the use of ZnO/SnO2 as photocatalyst have better
photocatalytic activity for degradation of congo red than SnO2 or
TiO2 (anatase, particle size: 30nm) alone.