Abstract: Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.
Abstract: In this article a comparison was made between Cu and
TiO2 supported catalysts on activated carbon for ozone
decomposition reaction. The activated carbon support in the case of
TiO2/AC sample was prepared by physicochemical pyrolysis and for
Cu/AC samples the supports are chemically modified carbons. The
prepared catalysts were synthesized by impregnation method. The
samples were annealed in two different regimes- in air and under
vacuum. To examine adsorption efficiency of the samples BET
method was used. All investigated catalysts supported on chemically
modified carbons have higher specific surface area compared to the
specific surface area of TiO2 supported catalysts, varying in the range
590÷620 m2/g. The method of synthesis of the precursors had
influenced catalytic activity.
Abstract: Plastics occupy wide place in the applications of
automotive, electronics and house goods. Especially reinforced
plastics become popular because of their high strength besides their
advantages of low weight and easy manufacturability. In this study,
mechanical and morphological properties of polypropylene (PP) and
high density polyethylene (HDPE) matrix composites reinforced with
surface modified nano titan dioxide (TiO2) particles were
investigated. Surface modification was made by coating the nano
powders with maleic anhydride grafted styrene ethylene butylene
styrene (SEBS-g-MA) and silane, respectively. After surface
modification, PP/TiO2 and HDPE/TiO2 composites were obtained by
using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.%
and 5 wt.%. Effects of surface modification were determined by
thermal and morphological analysis. SEBS-g-MA provided bridging
effect between TiO2 particles and polymer matrix while silane was
effective as a dispersant. Depending on that, homogenous structures
without agglomeration were obtained. Mechanical tests were
performed on the injection moldings of the composites for obtaining
the impact strength, tensile strength, stress at break, elongation and
elastic modulus. Reinforced HDPE and PP moldings gave higher
tensile strength and elastic modulus due to the rigid structure of TiO2.
Slight increment was seen in stress at break. Elongation and impact
strength decreased due to the stiffness of the nano titan dioxide.
Abstract: This paper presents the experimental results of
leakage current waveforms which appears on porcelain insulator
surface due to existence of artificial pollutants. The tests have been
done using the chemical compounds of NaCl, Na2SiO3, H2SO4, CaO,
Na2SO4, KCl, Al2SO4, MgSO4, FeCl3, and TiO2. The insulator
surface was coated with those compounds and dried. Then, it was
tested in the chamber where the high voltage was applied. Using
correspondence analysis, the result indicated that the fundamental
harmonic of leakage current was very close to the applied voltage
and third harmonic leakage current was close to the yielded leakage
current amplitude. The first harmonic power was correlated to first
harmonic amplitude of leakage current, and third harmonic power
was close to third harmonic one. The chemical compounds of H2SO4
and Na2SiO3 affected to the power factor of around 70%. Both are the
most conductive, due to the power factor drastically increase among
the chemical compounds.
Abstract: Highly ordered arrays of TiO2 nanotubes (TiNTs) were grown vertically on Ti foil by electrochemical anodization. We controlled the lengths of these TiNTs from 2.4 to 26.8 ¶üÇóμm while varying the water contents (1, 3, and 6 wt%) of the electrolyte in ethylene glycol in the presence of 0.5 wt% NH4F with anodization for various applied voltages (20–80 V), periods (10–240 min) and temperatures (10–30 oC). For vertically aligned TiNT arrays, not only the increase in their tube lengths, but also their geometric (wall thickness and surface roughness) and crystalline structure lead to a significant influence on photocatalytic activity. The length optimization for methylene blue (MB) photodegradation was 18 μm. Further extending the TiNT length yielded lower photocatalytic activity presumably related to the limited MB diffusion and light-penetration depth into the TiNT arrays. The results indicated that a maximum MB photodegradation rate was obtained for the discrete anatase TiO2 nanotubes with thick and rough walls.
Abstract: Sol-gel method has been used to fabricate
nanocomposite films on glass substrates composed halloysite clay
mineral and nanocrystalline TiO2. The methodology for the synthesis
involves a simple chemistry method utilized nonionic surfactant
molecule as pore directing agent along with the acetic acid-based solgel
route with the absence of water molecules. The thermal treatment
of composite films at 450oC ensures elimination of organic material
and lead to the formation of TiO2 nanoparticles onto the surface of
the halloysite nanotubes. Microscopy techniques and porosimetry
methods used in order to delineate the structural characteristics of the
materials. The nanocomposite films produced have no cracks and
active anatase crystal phase with small crystallite size were deposited
on halloysite nanotubes. The photocatalytic properties for the new
materials were examined for the decomposition of the Basic Blue 41
azo dye in solution. These, nanotechnology based composite films
show high efficiency for dye’s discoloration in spite of different
halloysite quantities and small amount of halloysite/TiO2 catalyst
immobilized onto glass substrates. Moreover, we examined the
modification of the halloysite/TiO2 films with silver particles in order
to improve the photocatalytic properties of the films. Indeed, the
presence of silver nanoparticles enhances the discoloration rate of the
Basic Blue 41 compared to the efficiencies obtained for unmodified
films.
Abstract: Characteristics and sonocatalytic activity of zeolite
Y catalysts loaded with TiO2 using impregnation and ion exchange
methods for the degradation of amaranth dye were investigated.
The Ion-exchange method was used to encapsulate the TiO2 into
the internal pores of the zeolite while the incorporation of TiO2
mostly on the external surface of zeolite was carried out using the
impregnation method. Different characterization techniques were
used to elucidate the physicochemical properties of the produced
catalysts. The framework of zeolite Y remained virtually
unchanged after the encapsulation of TiO2 while the crystallinity of
zeolite decreased significantly after the incorporation of 15 wt% of
TiO2. The sonocatalytic activity was enhanced by TiO2
incorporation with maximum degradation efficiencies of 50% and
68% for the encapsulated titanium and titanium loaded onto the
zeolite, respectively after 120min of reaction. Catalysts
characteristics and sonocatalytic behaviors were significantly
affected by the preparation method and the location of TiO2
introduced with zeolite structure. Behaviors in the sonocatalytic
process were successfully correlated with the characteristics of the
catalysts used.