Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants

 Sol-gel method has been used to fabricate
nanocomposite films on glass substrates composed halloysite clay
mineral and nanocrystalline TiO2. The methodology for the synthesis
involves a simple chemistry method utilized nonionic surfactant
molecule as pore directing agent along with the acetic acid-based solgel
route with the absence of water molecules. The thermal treatment
of composite films at 450oC ensures elimination of organic material
and lead to the formation of TiO2 nanoparticles onto the surface of
the halloysite nanotubes. Microscopy techniques and porosimetry
methods used in order to delineate the structural characteristics of the
materials. The nanocomposite films produced have no cracks and
active anatase crystal phase with small crystallite size were deposited
on halloysite nanotubes. The photocatalytic properties for the new
materials were examined for the decomposition of the Basic Blue 41
azo dye in solution. These, nanotechnology based composite films
show high efficiency for dye’s discoloration in spite of different
halloysite quantities and small amount of halloysite/TiO2 catalyst
immobilized onto glass substrates. Moreover, we examined the
modification of the halloysite/TiO2 films with silver particles in order
to improve the photocatalytic properties of the films. Indeed, the
presence of silver nanoparticles enhances the discoloration rate of the
Basic Blue 41 compared to the efficiencies obtained for unmodified
films.





References:
[1] G. A. Umbuzeiro, H.S. Freeman, S. H. Warren, D. P. Oliveira, Y. Terao,
T. Watanabe and D. D. Claxton, "The contribution of azo dyes to the
mutagenic activity of the Cristais River,”Chemosp., vol. 60, pp. 55-64,
June 2005.
[2] Y.E. Benkli, M.F. Can, M. Turan and M.S. Çelik, "Modification of
organo-zeolite surface for the removal of reactive azo dyes in fixed-bed
reactors,” Water Res., vol.39, pp. 487-493, January–February 2005.
[3] E. Forgacs, T. Cserháti and G. Oros, "Removal of synthetic dyes from
wastewaters: a review,” Environ.Int., vol. 30, pp. 953-971, September
2004.
[4] V. K. Gupta, J. Rajeev, N. Arunima, A. Shilpi and M. Shrivastava,
"Removal of the hazardous dye—Tartrazine by photodegradation on
titanium dioxide surface,”Mat. Sci. Engineer.C, vol. 31, pp. 1062-1067,
2011.
[5] M. I. Litter, "Heterogeneous photocatalysis: Transition metal ions in
photocatalytic systems,” Appl. Catal. B: Environ., vol. 23, pp. 89-114,
November 1999.
[6] X. M. Song, J. M. Wu, and M. Yan, "Photocatalytic degradation of
selected dyes by titania thin films with various nanostructures,” Thin
Sol. Film., vol. 517, pp. 4341-4347, June 2009.
[7] H. Choi, E. Stathatos and D. D. Dionysiou, "Photocatalytic TiO2 films
and membranes for the development of efficient wastewater treatment
and reuse systems,” Desalin., vol. 202, pp. 199-206, January 2007.
[8] H. Choi, E. Stathatos and D. D. Dionysiou, "Synthesis of nanocrystalline
photocatalytic TiO2 thin films and particles using sol–gel method
modified with nonionic surfactants,” T. Sol. Films, vol. 510, pp. 107-
114, July 2006.
[9] M. Bizarro, M.A. Tapia-Rodríguez, M.L. Ojeda, J.C. Alonso and A.
Ortiz, "Photocatalytic activity enhancement of TiO2 films by micro and
nano-structured surface modification,”Appl. Surf. Scien., vol. 255, pp.
6274-6278, April 2009.
[10] V. A. Sakkas, Md. A. Islam, C. Stalikas and T. A. Albanis,
"Photocatalytic degradation using design of experiments: A review and
example of the Congo red degradation,” J. Haz. Mat., vol. 175, 33-44,
March 2010.
[11] F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun and B. Xue, "Photodegradation
of an azo dye using immobilized nanoparticles of TiO2 supported by
natural porous mineral,” J. Haz. Mat., vol. 152, pp. 1037-1044, April
2008.
[12] X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, and G. Zhao, "Degradation of
methyl orange by composite photocatalysts nano-TiO2 immobilized on
activated carbons of different porosities,” J. Haz. Mat., vol. 169, pp.
1061–1067, September 2009.
[13] G. Rose, M. Echavia, F. Matzusawa and N. Negishi, "Photocatalytic
degradation of organophosphate and phosphonoglycine pesticides using
TiO2 immobilized on silica gel,”Chemosp., vol. 76, pp. 595-600, July
2009.
[14] C.-C. Wang, C-K Lee, M-D Lyu and L-C Juang, "Photocatalytic
degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y
zeolite: An investigation of the effects of operational parameters,” Dyes
and Pigm., vol. 76, pp. 817-824, 2008.
[15] L. Bouna, B. Rhouta, M. Amjoud, F. Maury, M.-C. Lafont, A. Jada, F.
Senocq and L. Daoudi, "Synthesis, characterization and photocatalytic
activity of TiO2 supported natural palygorskite microfibers,” Appl. Clay
Sci., vol. 52, pp. 301-311, May 2011.
[16] T. An, J. Chen, G. Li, X. Ding, G. Sheng, J. Fu, B. Mai and K. E.
O'Shea, "Characterization and the photocatalytic activity of TiO2
immobilized hydrophobic montmorillonite photocatalysts: Degradation
of decabromodiphenyl ether (BDE 209),” Catal. Today, vol. 139, pp. 69-
76, December 2008.
[17] D. Papoulis, S. Komarneni, A. Nikolopoulou, P. Tsolis-Katagas, D.
Panagiotaras, H.G. Kacandes, P. Zhang, S. Yin, T. Sato and H. Katsuki,
"Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and
photocatalytic activity,” Appl. Clay Sci., vol. 50, pp. 118-124, September
2010.
[18] D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, K. C.
Christoforidis, M. Fernández-García, H. Li, Y. Shu, T. Sato and H.
Katsuki, "Three-phase nanocomposites of two nanoclays and TiO2:
Synthesis, characterization and photacatalytic activities,” Appl. Catal. B:
Environ., vol. 147, pp. 526-533, April 2014.
[19] E. Stathatos, P. Lianos and C. Tsakiroglou, "Highly efficient
nanocrystalline titania films made from organic/inorganic
nanocomposite gels,” Micropor. andMesopor. Mat., vol. 75, pp. 255-
260, November 2004.
[20] E. Stathatos, D. Papoulis, C.A. Aggelopoulos, D. Panagiotarasand A.
Nikolopoulou, "TiO2/palygorskite composite nanocrystalline films
prepared by surfactant templating route: Synergistic effect to the
photocatalytic degradation of an azo-dye in water,” J. Haz. Mat., vol.
211–212, pp. 68-76, April 2012.
[21] E. Stathatos and P. Lianos, F. Del Monte and D. Levy and D. Tsiourvas,
"Formation of TiO2 nanoparticles in reverse micelles and their
deposition as thin films on glass substrates,”Langm., vol. 13, pp. 4295-
4300, August 1997.
[22] J.–C. Liu, "Mx-Oy-Siz Bonding Models for Silica-Supported Ziegler-
Natta Catalysts,” Appl. Organometal. Chem., vol. 13, pp. 295–302, April
1999.
[23] A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris,
"The photocatalytic activity and kinetics of the degradation of an anionic
azo-dye in a UV irradiated porous titania foam,” Appl. Catal. B:
Environ., vol. 84, pp. 351-355, December 2008.
[24] E. Stathatos, P. Lianos, P. Falaras and A. Siokou, "Photocatalytically
Deposited Silver Nanoparticles on Mesoporous TiO2 Films,”Langmuir,
vol. 16, pp. 2398-2400, January 2000.
[25] D. Gong, W. Chye, J. Ho, Y. Tang, Q. Tay, Y. Lai, J. G. Highfield and
Z. Chen, "Silver decorated titanate/titania nanostructures for efficient
solar driven photocatalysis,” J. Sol. St. Chem., vol. 189, pp. 117-122, May 2012.