Abstract: Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as automotive, electrical and medical devices. Because significant amounts of rare earth metals will be subjected to shortages in the future, therefore domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social and environmental impacts towards a circular economy. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd2O3) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550–800 oC to enable selective leaching of neodymium in the subsequent leaching step using H2SO4 at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700–800 oC prior to precipitation by oxalic acid and calcination to obtain Nd2O3 as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe2O3) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of Nd2O3 were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO3) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form Fe2O3 as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of Fe3O4 was still detected by XRD. The higher roasting temperature at 800 oC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 oC followed by acid leaching and roasting at 800 oC gave the optimum condition for further steps of precipitation and calcination to finally achieve Nd2O3.
Abstract: The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.
Abstract: Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.
Abstract: Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.
Abstract: The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.
Abstract: Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.
Abstract: Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.
Abstract: Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.
Abstract: This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.
Abstract: Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.
Abstract: Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).
Abstract: Landfill waste is a common problem as it has an
economic and environmental impact even if it is closed. Landfill
waste contains a high density of various persistent compounds such
as heavy metals, organic and inorganic materials. As persistent
compounds are slowly-degradable or even non-degradable in the
environment, they often produce sublethal or even lethal effects on
aquatic organisms. The aims of the present study were to estimate
sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“,
23°23‘28.4“) leachate on the locomotor activity of rainbow trout
Oncorhynchus mykiss juveniles using the original system package
developed in our laboratory for automated monitoring, recording and
analysis of aquatic organisms’ activity, and to determine patterns of
fish behavioral response to sublethal effects of leachate. Four
different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and
1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50,
respectively). Locomotor activity was measured after 5, 10 and 30
minutes of exposure during 1-minute test-periods of each fish (7 fish
per treatment). The threshold-effect-concentration amounted to 0.18
mL/L (0.0036 parts of 96-hour LC50). This concentration was found
to be even 2.8-fold lower than the concentration generally assumed to
be “safe” for fish. At higher concentrations, the landfill leachate
solution elicited behavioral response of test fish to sublethal levels of
pollutants. The ability of the rainbow trout to detect and avoid
contaminants occurred after 5 minutes of exposure. The intensity of
locomotor activity reached a peak within 10 minutes, evidently
decreasing after 30 minutes. This could be explained by the
physiological and biochemical adaptation of fish to altered
environmental conditions. It has been established that the locomotor
activity of juvenile trout depends on leachate concentration and
exposure duration. Modeling of these parameters showed that the
activity of juveniles increased at higher leachate concentrations, but
slightly decreased with the increasing exposure duration. Experiment
results confirm that the behavior of rainbow trout juveniles is a
sensitive and rapid biomarker that can be used in combination with
the system for fish behavior monitoring, registration and analysis to
determine sublethal concentrations of pollutants in ambient water.
Further research should be focused on software improvement aimed
to include more parameters of aquatic organisms’ behavior and to
investigate the most rapid and appropriate behavioral responses in
different species. In practice, this study could be the basis for the
development and creation of biological early-warning systems
(BEWS).
Abstract: In order to obtain efficient pollutants removal in
small-scale wastewater treatment plants, uniform water flow has to be
achieved. The experimental setup, designed for treating high-load
wastewater (leachate), consists of two aerobic biological reactors and
a lamellar settler. Both biological tanks were aerated by using three
different types of aeration systems - perforated pipes, membrane air
diffusers and tube ceramic diffusers. The possibility of homogenizing
the water mass with each of the air diffusion systems was evaluated
comparatively. The oxygen concentration was determined by optical
sensors with data logging. The experimental data was analyzed
comparatively for all three different air dispersion systems aiming to
identify the oxygen concentration variation during different
operational conditions. The Oxygenation Capacity was calculated for
each of the three systems and used as performance and selection
parameter. The global mass transfer coefficients were also evaluated
as important tools in designing the aeration system. Even though
using the tubular porous diffusers leads to higher oxygen
concentration compared to the perforated pipe system (which
provides medium-sized bubbles in the aqueous solution), it doesn’t
achieve the threshold limit of 80% oxygen saturation in less than 30
minutes. The study has shown that the optimal solution for the
studied configuration was the radial air diffusers which ensure an
oxygen saturation of 80% in 20 minutes. An increment of the values
was identified when the air flow was increased.
Abstract: Constructed Wetland (CW) is a reasonable method to
treat wastewater. Current study was carried out to co-treat landfill
leachate and domestic wastewater using a CW system. Typha
domingensis was transplanted to CW, which encloses two substrate
layers of adsorbents named ZELIAC and zeolite. Response surface
methodology and central composite design were employed to
evaluate experimental data. Contact time (h) and leachate-towastewater
mixing ratio (%; v/v) were selected as independent
factors. Phenols and manganese removal were selected as dependent
responses. At optimum contact time (48.7 h) and leachate-towastewater
mixing ratio (20.0%), removal efficiencies of phenols and
manganese removal efficiencies were 90.5%, and 89.4%,
respectively.
Abstract: The goal of this experiment is to evaluate the
effectiveness of different leachate pre-treatment options in terms of
COD and ammonia removal. This research focused on the evaluation
of physical-chemical methods for pre-treatment of leachate that
would be effective and rapid in order to satisfy the requirements of
the sewer discharge by-laws. The four pre-treatment options
evaluated were: air stripping, chemical coagulation, electrocoagulation
and advanced oxidation with sodium ferrate. Chemical
coagulation reported the best COD removal rate at 43%, compared to
18% for both air stripping and electro-coagulation, and 20% for
oxidation with sodium ferrate. On the other hand, air stripping was
far superior to the other treatment options in terms of ammonia
removal with 86%. Oxidation with sodium ferrate reached only 16%,
while chemical coagulation and electro-coagulation removed less
than 10%. When combined, air stripping and chemical coagulation
removed up to 50% COD and 85% ammonia.
Abstract: Due to the resultant leachate from waste
decomposition in landfills has polluter potential hundred times
greater than domestic sewage, this is considered a problem related to
the depreciation of environment requiring pre-disposal treatment.In
seeking to improve this situation, this project proposes the treatment
of landfill leachate using natural fibers intercropped with advanced
oxidation processes. The selected natural fibers were palm, coconut
and banana fiber.These materials give sustainability to the project
because, besides having adsorbent capacity, are often part of waste
discarded. The study was conducted in laboratory scale.In trials, the
effluents were characterized as Chemical Oxygen Demand (COD),
Turbidity and Color. The results indicate that is technically
promising since that there were extremely oxidative conditions, the
use of certain natural fibers in the reduction of pollutants in leachate
have been obtained results of COD removals between 67.9% and
90.9%, Turbidity between 88.0% and 99.7% and Color between
67.4% and 90.4%.The expectation generated is to continue evaluating
the association of efficiency of other natural fibers with other landfill
leachate treatment processes.
Abstract: Biological conversion of biomass to methane has
received increasing attention in recent years. Grasses have been
explored for their potential anaerobic digestion to methane. In this
review, extensive literature data have been tabulated and classified.
The influences of several parameters on the potential of these
feedstocks to produce methane are presented. Lignocellulosic
biomass represents a mostly unused source for biogas and ethanol
production. Many factors, including lignin content, crystallinity of
cellulose, and particle size, limit the digestibility of the hemicellulose
and cellulose present in the lignocellulosic biomass. Pretreatments
have used to improve the digestibility of the lignocellulosic biomass.
Each pretreatment has its own effects on cellulose, hemicellulose and
lignin, the three main components of lignocellulosic biomass. Solidstate
anaerobic digestion (SS-AD) generally occurs at solid
concentrations higher than 15%. In contrast, liquid anaerobic
digestion (AD) handles feedstocks with solid concentrations between
0.5% and 15%. Animal manure, sewage sludge, and food waste are
generally treated by liquid AD, while organic fractions of municipal
solid waste (OFMSW) and lignocellulosic biomass such as crop
residues and energy crops can be processed through SS-AD. An
increase in operating temperature can improve both the biogas yield
and the production efficiency, other practices such as using AD
digestate or leachate as an inoculant or decreasing the solid content
may increase biogas yield but have negative impact on production
efficiency. Focus is placed on substrate pretreatment in anaerobic
digestion (AD) as a means of increasing biogas yields using today’s
diversified substrate sources.
Abstract: Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed.
The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.
Abstract: Soil is a complex physical and biological system that provides support, water, nutrients and oxygen to the plants. Apart from these, it acts as a connecting link between inorganic, organic and living components of the ecosystem. In recent years, presence of xenobiotics, alterations in the natural soil environment, application of pesticides/inorganic fertilizers, percolation of contaminated surface water as well as leachates from landfills to subsurface strata and direct discharge of industrial wastes to the land have resulted in soil pollution which in turn has posed severe threats to human health especially in terms of causing carcinogenicity by direct DNA damage. The present review is an attempt to summarize literature on sources of soil pollution, characterization of pollutants and their consequences in different living systems.
Abstract: Although properly made concrete is inherently a durable material, there are many physical and chemical forces in the environment which can contribute to its deterioration. This paper deals with two aspects of concrete durability in chemical aggressive environment: degradation effect of particular aggressive exposure and role of particular mineral additives. Results of the study of leaching and acid corrosion processes in samples prepared with specific dosage of microsilica and zeolite are given in the paper.
Corrosion progress after 60-day exposition is manifested by increasing rate of both Ca and Si release, what is identified by XRF method. Kind and dosage of additions used in experiment was found to be helpful for stabilization of concrete microstructure.The lowest concentration of mean elements in leachates was observed for mixture V1 (microsilica only) unlike the V2 (microsilica + zeolite). It is surprising in the terms of recommendations of zeolite application for acid exposure. Using microsilica only seems to be more effective.