Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Estimation Model for Concrete Slump Recovery by Using Superplasticizer

This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological, and Bio-Distribution Studies in Rabbits

This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 μg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters, and histopathological examination of various rabbits’ organs. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions were observed in liver, lungs and kidneys accompanied with mild absolute neutrophilia and significant monocytosis. The highest gold levels were found in the spleen and liver followed by lungs, and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.

Phytochemical Screening, Antioxidant Activity and Lipid Profile Effects of Citrus reticulata Fruit Peel, Zingiber officinale Rhizome and Sesamum indicum Seed Extracts

Many herbal medicinal products are considered potential anti-hypercholesterolemic agents with encouraging safety profiles, however only a limited amount of clinical research exists to support their efficacy. The present study was designed to compare the antihypercholesterolemic and antioxidant activities of the crude ethanolic extracts of Citrus reticulata fruit peel, Zingiber officinale rhizome and Sesamum indicum seeds. Forty-five rats were used throughout the experiment which are extended for four weeks. These were divided into nine groups, five rats per each group as follows; group 1 was the normal control group (rats only fed standard normal rat diet), group 2 was the hypercholesterolemic control group (rats fed only hypercholesterolemic diet which contained 1% cholesterol plus 10% saturated animal fat added to the normal rat diet), groups 3 and 4 were fed hypercholesterolemic diet in addition to Citrus reticulata ethanolic extract at doses of (250mg/kg (group 3) and 500mg/kg (group 4)) administered daily via oral route, groups 5 and 6 were given hypercholesterolemic diet in addition to Zingiber officinale ethanolic extract at doses of (250mg/kg (group 5) and 500mg/kg (group 6)) daily through oral route, groups 7 and 8 fed on hypercholesterolemic diet in addition to Sesamum indicum ethanolic extract at doses of (250mg/kg (group 7) and 500mg/kg (group 8)) daily orally; and group 9 rats were given hypercholesterolemic diet in addition to atorvastatin (0.18mg/kg) daily via oral route as a standard reference antihypercholesterolemic drug. Blood samples from all groups were drawn from the retro-orbital venous plexus four weeks following treatment after overnight fasting and the lipid profile (total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and triglyceride levels) were measured and the risk ratio (TC/HDL-C) was assessed. The antioxidant activity of the three plants extracts was determined using DPPH free-radical antioxidant assay. Results of in vivo and in vitro antihypercholesterolemic and antioxidant assay respectively, revealed that the three extracts possess comparable antioxidant and antihypercholesterolemic activities.

Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent

An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Preliminary Dosimetric Evaluation of a New Therapeutic 177Lu Complex for Human Based on Biodistribution Data in Rats

Abstract—[Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown high ability for stopping the synthesis of DNA and also acting as a photosensitizer. Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by (n, gamma) reaction in a research reactor. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. Final preparation of the radiolabelled complex showed high radiochemical purity of > 99%. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectively. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Human Absorbed Dose Estimation of a New IN-111 Imaging Agent Based on Rat Data

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In- 1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In- DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In- DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Antioxidant Properties, Ascorbic Acid and Total Carotenoid Values of Sweet and Hot Red Pepper Paste: A Traditional Food in Turkish Diet

Red pepper (Capsicum annum L.) has long been recognized as a good source of antioxidants, being rich in ascorbic acid and other phytochemicals. In Turkish cuisine red pepper is sometimes consumed raw in salads and baked as a garnish, but its most wide consumption type is red pepper paste. The processing of red pepper into pepper paste includes various thermal treatment steps such as heating and pasteurizing. There are reports demonstrating an enhancement or reduction in antioxidant activity of vegetables after thermal treatment. So this study was conducted to investigate the total phenolic, ascorbic acid and total carotenoids as well as free radical scavenging activity of raw red pepper and various red pepper pastes obtainable on the market. The samples were analyzed for radical-scavenging activity (RSA) and total polyphenol (TP) content using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteu methods, respectively. Total carotenoids and ascorbic acid contents were determined spectrophotometrically. Results suggest that hot pepper paste contained significantly (P0.05) difference in RSA, ascorbic acid and total carotenoids content between sweet and hot red pepper paste products. It is concluded that the red pepper paste, that has a wide range of consumption in Turkish cuisine, presents a good dose of phenolic compounds and antioxidant capacity and it should be regarded as a functional food.

Screening of Potential Sources of Tannin and Its Therapeutic Application

Tannins are a unique category of plant phytochemicals especially in terms of their vast potential health-benefiting properties. Researchers have described the capacity of tannins to enhance glucose uptake and inhibit adipogenesis, thus being potential drugs for the treatment of non-insulin dependent diabetes mellitus. Thus, the present research was conducted to find out tannin content of food products. The percentage of tannin in various analyzed sources ranged from 0.0 to 108.53%; highest in kathaa and lowest in ker and mango bark. The percentage of tannins present in the plants, however, varies. Numerous studies have confirmed that the naturally occurring polyphenols are key factor for the beneficial effects of the herbal medicines. Isolation and identification of active constituents from plants, preparation of standardized dose & dosage regimen can play a significant role in improving the hypoglycaemic action.

CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Design, Construction and Performance Evaluation of a HPGe Detector Shield

A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.

Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Effect of Silver Nanoparticles on Seed Germination of Crop Plants

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia

In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition.

A Piscan Ulcerative Aeromonas Infection

In the immunologic sense, clinical infection is a state of failure of the immune system to combat the pathogenic weapon of the bacteria invading the host. A motile gram negative vibroid organism associated with marked mono and poly nuclear cell responses was traced during the examination of a clinical material from an infected common carp Cyprinus carpio. On primary plate culture, growth was shown to be pure, dense population of an Aeromonas-like colony morphotype. The pure isolate was found to be; Aerobic, facultatively anaerobic, non-halophilic, grew at 0C, and 37C, oxidase positive utilizes glucose through fermentative pathway, resist 0/129 and novobiocin, produces alanine and lysine decarboxylases but non-producing ornithine dehydrolases. Tests for the in vitro determinants of pathogenicity has shown to be; Betahaemolytic onto blood agar, gelatinase, casienase and amylase producer. Three in vivo determinants of pathogenicity were tested as, the lethal dose fifty, the pathogenesis and pathogenicity. It was evident that 0.1 milliliter of the causal bacterial cell suspension of a density 1 x 107 CFU/ml injected intramuscularly into an average of 100gms fish toke five days incubation period, then at the day six morbidity and mortality were initiated. LD50 was recorded at the day 12 post-infection. Use of an LD50 doses to study the pathogenicity, reveals mononuclear and polynuclear cell responses, on examining the stained direct films of the clinical materials from the experimentally infected fish. Re-isolation tests confirm that the reisolant is same. The course of the infection in natural case was shown manifestation of; skin ulceration, haemorrhage and descaling. On evisceration, the internal organs were shown; congestion in the intestines, spleen and, air sacs. The induced infection showed a milder form of these manifestations. The grading of the virulence of this organism was virulent causing chronic course of infections as indicated from the pathogenesis and pathogenicity studies. Thus the infectious bacteria were consistent with Aeromonas hydrophila, and the infection was chronic.

The Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Radiobiological Model in Radiotherapy Planning for Prostate Cancer Treatment

Quantitative radiobiological models can be used to assess the optimum clinical outcome from sophisticated therapeutic modalities by calculating tumor control probability (TCP) and normal tissue complication probability (NTCP). In this study two 3D-CRT and an IMRT treatment plans were developed with an initial prescription dose of 60 Gy in 2 Gy/fraction to prostate. Sensitivity of TCP and Complication free tumor control probability (P+) to the different values of α/β ratio was investigated for various prescription doses planned to be delivered in either a fixed number of fractions (I) or in a fixed dose per fraction (II) in each of the three different treatment plans. High dose/fraction and high α/β value result in comparatively smaller P+ and IMRT plans resulted in the highest P+, mainly due to the decrease in NTCP. If α/β is lower than expected, better tumor control can be achieved by increasing dose/fraction but decreasing the number of fractions.

Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Effect of Silver Nanoparticles on Seed Germination of Crop Plants

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Phyllantus niruri Protects against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Enriched Fractions of Rats Brain

The potential neuroprotective effect of Phyllantus nuriri against Fe2+ and sodium nitroprusside (SNP) induced oxidative stress in mitochondria of rats brain was evaluated. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluoresce indiacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10μM) and SNP (5μM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-200 μg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.540.01), caffeic acid (7.930.02), rutin (25.310.05), quercetin (31.280.03) and kaemferol (14.360.01). This result suggests that these phytochemicals account for the protective actions of P. niruri against Fe2+ and SNP -induced oxidative stress. Our results show that P. nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.