Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological, and Bio-Distribution Studies in Rabbits

This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 μg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters, and histopathological examination of various rabbits’ organs. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions were observed in liver, lungs and kidneys accompanied with mild absolute neutrophilia and significant monocytosis. The highest gold levels were found in the spleen and liver followed by lungs, and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.




References:
[1] Timbrell, J. A. (1998): Biomarkers in toxicology. Toxicology, 129, 1–
12.
[2] Schmid O., Möller W., Semmler-Behnke M., Ferron G. A., Karg E.,
Lipka J., Schulz H., Kreyling W. G., Stoeger T. Dosimetry and
toxicology of inhaled ultrafine particles. Biomarkers. 2009 Jul;14 Suppl
1:67-73. doi: 10.1080/13547500902965617.
[3] Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. (2008): Gold
nanoparticles in delivery applications. Adv. Drug. Delivery Rev., 60,
1307–1315.
[4] Bhattacharya, R.; Mukherjee, P. (2008): Biological properties of naked
metal nanoparticles. Adv. Drug. Delivery Rev.,60, 1289–1306.
[5] Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D.
(2005): Gold nanoparticles are taken up by human cells but donot cause
acute cytotoxicity. Small, 1, 325–327.
[6] Dobrovolskaia, S. E.; McNeil, M. A.(2007): Immunological properties
of engineered nanoparticles. Nat. Nanotechnol., 2, 469–478.
[7] Patra, H. K.; Banerjee, S.; Chaudhuri, U.; Lahiri, P.; Dasgupta,A. K.
(2007): Cell selective response to gold nanoparticles. Nanomedicine,
2007, 3, 111––119.
[8] Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.;
Billan, S.; Abdah-Bortnyad, R.; Kuten, R.; Haick, H. (2009): Diagnosing
lung cancer in exhaled breath using gold nanoparticles. Nat.
Nanotechnol., 4, 669–673.
[9] Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, S.; Simon, U.;
Schmid, G.; Brandau, W.; Jahnen-Dechent, W.(2007): Size-dependent
cytotoxicity of gold nanoparticles. Small, 3, 1941–1949.
[10] Zhang, X. D.; Guo, M. L.; Wu, H. Y.; Sun, Y. M.; Ding, Y. Q.; Feng,
X.; Zhang, L. A. (2009): Irradiation stability and cytotoxicity of gold
nanoparticles for radiotherapy. Int. J. Nanomedicine, 4, 165–173.
[11] Sung, J. H.; Ji, J. H.; Park, J. D.; Song, M. Y.; Song, K. S.; Ryu, H. R.;
Yoon, J. U.; Jeon, K. S.; Jeong, J.; Han, B. S.; Chung, Y. H.; Chang,
H.K.; Lee, J. H.; Kim, D. W.; Kelman, B. J. and Yu, I. J. (2011):
Subchronic inhalation toxicity of gold nanoparticles. J. Part. Fibre
Toxicol., 2011, 8, 16–pp18.
[12] Turkevitch, J.; Stevenson, P.C.; Hillier, J. (1951): A study of the
nucleation and growth process in the synthesis of colloidal gold. Faraday
Soc. 1951, 11, 55–75.
[13] Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. (2000): Polyethylene
glycol-coated biocompatible surfaces. J. Biomed. Mater. Res., 5,
51(3):343-51.
[14] Liu, J. and Lu, Y. (2006) Preparation of aptamer-linked gold
nanoparticle purple aggregates for colorimetric sensing of analytes.
Nature Protocols;.1(1), 246-52.
[15] Alkilany, M. A.; Murphy, J. M. (2010): Toxicity and cellular uptake of
gold nanoparticles: what we have learned so far? Journal of nanoparticle
research 12 (7), 2313-2333.
[16] Feldman, B. V.; Zinkl, J. G. and Jian, N. C. (2000): Schalm’s Veterinary
Hematology. 5th ed., Lea and Fibiger, Philadelphia, USA.
[17] Weichselbaum, T. E. (1946): An accurate rapid method for
determination of protein in small amounts of blood, serum and plasma.
Am. J. Clin. Pathol., 7:40.
[18] Dumas, B. T. and Biggs, H. G. (1972): Standard Methods of Clinical
Chemistry. Vol., 7: Academic Press, New York, USA, pp 175.
[19] Searcy, R. L.; Reardon, J. E. and Foreman, J. A. (1967): Estimation of
urea. Am. J. Med. Tech., 33:15-20.
[20] Larsen K. Creatinine assay in the presence of protein with LKB 8600
Reaction Rate Analyser. Clin Chim Acta. 1972; 38: 475–476. doi:
10.1016/0009-8981(72)90146-5.
[21] Reitman A. and Frankel S., A colorimetric method for the determination
of serum glutamic oxalacetic and glutamic pyruvic transaminases. Amer.
J. Clin. Path., 1957,28: 56-68.
[22] Terri, L. D. and Karen W. M. (1976): A spectrophotometric method for
determination of glucose in blood serum. A freshman laboratory
experiment for medically and biologically oriented students. J. Chem.
Educ. 53 (2),126
[23] Kehoe, D. F.; Sullivan, D. M. and Smith, R. L. (1988): Determination of
gold in animal tissue by graphite furnace atomic absorption
spectrophotometry. J. Assoc. Off. Anal. Chem., 71(6):1153-1155
[24] Bancroft, J. D. and Gamble, M. (2008) Theory and Practice of
Histological Techniques. 6th Edition, Churchill Livingstone, Elsevier,
China.
[25] Snedecor, G. W. and Cochran, W. G. Statistical methods.(1980)7th Ed.
Allid pacific, Bombay.
[26] Rai, V. R. and Bai, J. A. (2011): Nanoparticles and their Potential
Application as Antimicrobials. In: Science against Microbial Pathogens:
Communicating Current Research and Technological Advances,
Mendez-Vilas, A. (Ed.). University of Mysore, India, pp: 197-209.
[27] Chah, S.; Hammond, M.; Zare, R. (2005): Gold nanoparticles as
colorimetric sensor for protein conformational changes. Chem. Biol.,
12(3): 3 23-8.
[28] Wang, Z.; Zdrojek, M., Melin, T. and Devel, M. (2008): Electric charge
enhancements in carbon nanotubes: Theory and experiments. Phys. Rev.
; B 78, 085425 (2008).
[29] Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z.
B.; Meng, A. M.; Liu, P. X.; Zhang, L. A. and Fan, F. Y. (2010):
Toxicologic effects of gold nanoparticles in-vivo by different
administration routes. Int. J. Nanomed., 5:771-781.
[30] Das, S.; Debnath, N.; Mitra, S.; Datta, A. and Goswami, A. (2012):
Comparative analysis of stability and toxicity profile of three differently
capped gold nanoparticles for biomedical usage. Biometals, 25(5):1009-
1022.
[31] Sengupta, J.; Datta, P.; Patra, H. K.; Dasgupta, A. K. and Gomes, A.
(2013): In-vivo interaction of gold nanoparticles after acute and chronic
exposures in experimental animal models. J. Nanosci. Nanotechnol.,
13(3):1660-1670.
[32] Dwivedi, P. D.; Misra, A.; Shanker, R. and Das, M. (2009): Are
nanomaterials a threat to the immune system? Nanotoxicol., 3(1):19–26.
[33] Weiss, D. J.; Wardrop, K.; Jane and Schalm, O. W. (2010): Schalm’s
Veterinary Hematology. 6th ed.; Wiley-Blackwell, USA. [34] Hainfeld, J. F.; Slatkin, D. N. and Smilowitz, H. M. (2004): The use of
gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.,
49(18):309-315.
[35] Fent, G. M.; Casteel, S. W.; Kim, D. Y.; Kannan, R.; Katti, K.; Chanda,
N. and Katti, K. (2009): Biodistribution of maltose and gum arabic
hybrid gold nanoparticles after intravenous injection in juvenile swine.
Nanomed. ; 5(2):128-135.
[36] Huang, X. L.; Zhang, B.; Ren, L.; Ye, S. F.; Sun, L. P.; Zhang, Q. Q.;
Tan, M. C. and Chow, G. M. (2008): In-vivo toxic studies and
biodistribution of near infrared sensitive Au-Au(2)S nanoparticles as
potential drug delivery carriers. J. Mater. Sci.: Materials in Medicine,
19(7):2581-2588.
[37] Sonavane, G.; Tomoda, K. and Makino, K. (2008): Biodistribution of
colloidal gold nanoparticles after intravenous administration: effect of
particle size. Colloids Surf. B, Biointerfaces, 66(2):274-280.
[38] Lipka, J.; Semmler-Behnke, M.; Sperling, R.A.; Wenk, A.; Takenaka,
S.; Schleh, C.; Kissel, T.; Parak, W. J. and Kreyling, W. G. (2010):
Biodistribution of PEG-modified gold nanoparticles following
intratracheal instillation and intravenous injection. Biomaterials,
31(25):6574-6581.
[39] Cho, W. S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H. Y.; Han, B. S.; Kim,
S.H.; Kim, H.O.; Lim, Y.T.; Chung, B.H. and Jeong, J. (2009 a): Acute
toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold
nanoparticles. Toxicol. Appl. Pharmacol., 236(1):16-24.
[40] Doudi, M. and Setorki, M. (2014): The acute liver injury in rat caused by
of gold nanoparticles. Nano medicine J. V. (1), I (4), P. 248.
[41] Cho, W. S.; Kim, S.; Han, B. S.; Son, W. C. and Jeong, J. (2009 b):
Comparison of gene expression profiles in mice liver following
intravenous injection of 4 and 100 nm-sized PEG-coated gold
nanoparticles. Toxicol. Lett. , 191(1):96-102.
[42] Terentyuk, G. S.; Maslyakova, G. N.; Suleymanova, L. V.; Khlebtsov,
B. N.; Kogan, B. Y.; Akchurin, G. G.; Shantrocha, A. V.; Maksimova, I.
L.; Khlebtsov, N. G. and Tuchin, V. V. (2009): Circulation and
distribution of gold nanoparticles and induced alterations of tissue
morphology at intravenous particle delivery. J. Biophotonics, 2(5):292-
302.
[43] Abdelhalim, M. A. and Jarrar, B. M. (2011 b): Renal tissue alterations
were size-dependent with smaller ones induced more effects and related
with time exposure of gold nanoparticles. Lipids Health Dis., 10:163.
[44] Chen, Y. S.; Hung, Y. C.; Liau, I. and Huang, G.S. (2009): Assessment
of the In-vivo Toxicity of gold nanoparticles. Nanoscale Res. Lett.,
4(8):858-864.
[45] Lasagna-Reeves, C.; Gonzalez-Romero, D.; Barria, M. A.; Olmedo, I.;
Clos, A.; Sadagopa, Ramanujam. V.M.; Urayama, A.; Vergara, L.;
Kogan, M.J. and Soto, C. (2010): Bioaccumulation and toxicity of gold
nanoparticles after repeated administration in mice. Biochem. Biophys.
Res. Commun., 393(4):649-655.