GSM Position Tracking using a Kalman Filter

GSM has undoubtedly become the most widespread cellular technology and has established itself as one of the most promising technology in wireless communication. The next generation of mobile telephones had also become more powerful and innovative in a way that new services related to the user-s location will arise. Other than the 911 requirements for emergency location initiated by the Federal Communication Commission (FCC) of the United States, GSM positioning can be highly integrated in cellular communication technology for commercial use. However, GSM positioning is facing many challenges. Issues like accuracy, availability, reliability and suitable cost render the development and implementation of GSM positioning a challenging task. In this paper, we investigate the optimal mobile position tracking means. We employ an innovative scheme by integrating the Kalman filter in the localization process especially that it has great tracking characteristics. When tracking in two dimensions, Kalman filter is very powerful due to its reliable performance as it supports estimation of past, present, and future states, even when performing in unknown environments. We show that enhanced position tracking results is achieved when implementing the Kalman filter for GSM tracking.

Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

An Evaluation on Fixed Wing and Multi-Rotor UAV Images Using Photogrammetric Image Processing

This paper has introduced a slope photogrammetric mapping using unmanned aerial vehicle. There are two units of UAV has been used in this study; namely; fixed wing and multi-rotor. Both UAVs were used to capture images at the study area. A consumer digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. The objectives of this study are to obtain three dimensional coordinates of slope area and to determine the accuracy of photogrammetric product produced from both UAVs. Several control points and checkpoints were established Real Time Kinematic Global Positioning System (RTK-GPS) in the study area. All acquired images from both UAVs went through all photogrammetric processes such as interior orientation, exterior orientation, aerial triangulation and bundle adjustment using photogrammetric software. Two primary results were produced in this study; namely; digital elevation model and digital orthophoto. Based on results, UAV system can be used to mapping slope area especially for limited budget and time constraints project.

GSM-Based Approach for Indoor Localization

Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.

WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

Portable Virtual Piano Design

The purpose of this study is to design a portable virtual piano. By utilizing optical fiber gloves and the virtual piano software designed by this study, the user can play the piano anywhere at any time. This virtual piano consists of three major parts: finger tapping identification, hand movement and positioning identification, and MIDI software sound effect simulation. To play the virtual piano, the user wears optical fiber gloves and simulates piano key tapping motions. The finger bending information detected by the optical fiber gloves can tell when piano key tapping motions are made. Images captured by a video camera are analyzed, hand locations and moving directions are positioned, and the corresponding scales are found. The system integrates finger tapping identification with information about hand placement in relation to corresponding piano key positions, and generates MIDI piano sound effects based on this data. This experiment shows that the proposed method achieves an accuracy rate of 95% for determining when a piano key is tapped.

Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm

Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.

Universal Qibla and Prayer Time Finder

People nowadays love to travel around the world. Regardless of their location and time, they especially Muslims still need to perform their five times prayer. Normally for travelers, they need to bring maps, compass and for Muslim, they even have to bring Qibla pointer when they travel. It is slightly difficult to determine the Qibla direction and to know the time for each prayer. In this paper we present a new electronic device called Universal Qibla and Prayer Time Finder to locate the Qibla direction and to determine each prayer time based on the current user-s location. This device use PIC microcontroller equipped with digital compass and Global Positioning System (GPS) where it will display the exact Qibla direction and prayer time automatically at any place in the world. This device is reliable, user friendly and accurate in determining the Qibla direction and prayer time.

Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields

This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface da

Optimization Parameters of Rotary Positioner Controller using CDM

The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.

Ethnobotany and Distribution of Dioscoreahispida Dennst. (Dioscoreaceae) in Besut, Marang and Setiu Districts of Terengganu, Peninsular Malaysia

Dioscorea species or commonly named as yam is reported to be one of the major food sources worldwide. This ethnobotanical study was conducted to document local knowledge and potentials of DioscoreahispidaDennst. and to investigate and record its distribution in three districts of Terengganu. Information was gathered from 23 villagers from three districts of Besut, Marang and Setiu by using semi-structured questionnaire. The villagers were randomly selected and no appointment was made prior to the visits. For distribution, the location of Dioscoreahispida was recorded by using the Global Positioning System (GPS). The villagers identified Dioscoreahispida or locally named ubigadong by looking at the physical characteristics that include its leaf shape, stem and the color of the tuber-s flesh. The villagers used Dioscoreahispida in many ways in their life such as for food, medicinal purposes and fish poison.

Navigation and Self Alignment of Inertial Systems using Nonlinear H∞ Filters

Micro electromechanical sensors (MEMS) play a vital role along with global positioning devices in navigation of autonomous vehicles .These sensors are low cost ,easily available but depict colored noises and unpredictable discontinuities .Conventional filters like Kalman filters and Sigma point filters are not able to cope with nonwhite noises. This research has utilized H∞ filter in nonlinear frame work both with Kalman filter and Unscented filter for navigation and self alignment of an airborne vehicle. The system is simulated for colored noises and discontinuities and results are compared with not robust nonlinear filters. The results are found 40%-70% more robust against colored noises and discontinuities.

Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System

This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.

The Wine List Design by Upscale Restaurants

This paper investigates the structure and content of the wine lists in upscale restaurants in Portugal (N=61). The respondents considered that a wine list should be easy to use and to modify, welldesigned, modern and varied. Respondents also stated that they perform on average 6 revisions to the wine list per year. The restaurant owner, the restaurant manager and the sommelier were the main persons in charge of the wine list design. One of the most important reasons for selecting wines across most restaurants was to ‘complement the menu’ and ‘pairing food with wine’. Restaurants also reported to be relatively independent from suppliers and magazine evaluations. Moreover, this work revealed that the restaurant wine list is considered by restaurateurs as a strategic tool to sell wine as a complement to the menu, to improve customer satisfaction and loyalty, to increase restaurant value and to enhance a successful positioning.

Self-protection Method for Flying Robots to Avoid Collision

This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other auxiliary positioning systems. The Self-protection System gives robots self-protection abilities to work in uncertain 3D dynamic environments. Simulations illustrate the validity of the proposed method.

On the Analysis of Localization Accuracy of Wireless Indoor Positioning Systems using Cramer's Rule

This paper presents an analysis of the localization accuracy of indoor positioning systems using Cramer-s rule via IEEE 802.15.4 wireless sensor networks. The objective is to study the impact of the methods used to convert the received signal strength into the distance that is used to compute the object location in the wireless indoor positioning system. Various methods were tested and the localization accuracy was analyzed. The experimental results show that the method based on the empirical data measured in the non line-of-sight (NLOS) environment yield the highest localization accuracy; with the minimum error distance less than 3 m.

A 3D Virtual Navigation System Integrating User Positioning and Pre-Download Mechanism

This paper takes the actual scene of Aletheia University campus – the Class 2 national monument, the first educational institute in northern Taiwan as an example, to present a 3D virtual navigation system which supports user positioning and pre-download mechanism. The proposed system was designed based on the principle of Voronoi Diagra) to divide the virtual scenes and its multimedia information, which combining outdoor GPS positioning and the indoor RFID location detecting function. When users carry mobile equipments such as notebook computer, UMPC, EeePC...etc., walking around the actual scenes of indoor and outdoor areas of campus, this system can automatically detect the moving path of users and pre-download the needed data so that users will have a smooth and seamless navigation without waiting.