Developing a Conjugate Heat Transfer Solver

The current paper presents a numerical approach in solving the conjugate heat transfer problems. A heat conduction code is coupled internally with a computational fluid dynamics solver for developing a couple conjugate heat transfer solver. Methodology of treating non-matching meshes at interface has also been proposed. The validation results of 1D and 2D cases for the developed conjugate heat transfer code have shown close agreement with the solutions given by analysis.

Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm

The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.

The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Comparison of Detached Eddy Simulations with Turbulence Modeling

Flow field around hypersonic vehicles is very complex and difficult to simulate. The boundary layers are squeezed between shock layer and body surface. Resolution of boundary layer, shock wave and turbulent regions where the flow field has high values is difficult of capture. Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions near solid body boundaries and where the turbulent length scale is less than the maximum grid dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the grid dimension, the regions are solved using the LES mode. Therefore the grid resolution is not as demanding as pure LES, thereby considerably cutting down the cost of the computation. In this research study hypersonic flow is simulated at Mach 8 and different angle of attacks to resolve the proper boundary layers and discontinuities. The flow is also simulated in the long wake regions. Mesh is little different than RANS simulations and it is made dense near the boundary layers and in the wake regions to resolve it properly. Hypersonic blunt cone cylinder body with frustrum at angle 5o and 10 o are simulated and there aerodynamics study is performed to calculate aerodynamics characteristics of different geometries. The results and then compared with experimental as well as with some turbulence model (SA Model). The results achieved with DES simulation have very good resolution as well as have excellent agreement with experimental and available data. Unsteady simulations are performed for DES calculations by using duel time stepping method or implicit time stepping. The simulations are performed at Mach number 8 and angle of attack from 0o to 10o for all these cases. The results and resolutions for DES model found much better than SA turbulence model.

A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Landowers' Participation Behavior on the Payment for Environmental Service (PES): Evidences from Taiwan

To respond to the Kyoto Protocol, the policy of Payment for Environmental Service (PES), which was entitled “Plain Landscape Afforestation Program (PLAP)", was certified by Executive Yuan in Taiwan on 31 August 2001 and has been implementing for six years since 1 January 2002. Although the PLAP has received a lot of positive comments, there are still many difficulties during the process of implementation, such as insufficient technology for afforestation, private landowners- low interests in participating in PLAP, insufficient subsidies, and so on, which are potential threats that hinder the PLAP from moving forward in future. In this paper, selecting Ping-Tung County in Taiwan as a sample region and targeting those private landowners with and without intention to participate in the PLAP, respectively, we conduct an empirical analysis based on the Logit model to investigate the factors that determine whether those private landowners join the PLAP, so as to realize the incentive effects of the PLAP upon the personal decision on afforestation. The possible factors that might determine private landowner-s participation in the PLAP include landowner-s characteristics, cropland characteristics, as well as policy factors. Among them, the policy factors include afforestation subsidy amount (+), duration of afforestation subsidy (+), the rules on adjoining and adjacent areas (+), and so on, which do not reach the remarkable level in statistics though, but the directions of variable signs are consistent with the intuition behind the policy. As for the landowners- characteristics, each of age (+), education level (–), and annual household income (+) variables reaches 10% of the remarkable level in statistics; as for the cropland characteristics, each of cropland area (+), cropland price (–), and the number of cropland parcels (–) reaches 1% of the remarkable level in statistics. In light of the above, the cropland characteristics are the dominate factor that determines the probability of landowner-s participation in the PLAP. In the Logit model established by this paper, the probability of correctly estimating nonparticipants is 98%, the probability of correctly estimating the participants is 71.8%, and the probability for the overall estimation is 95%. In addition, Hosmer-Lemeshow test and omnibus test also revealed that the Logit model in this paper may provide fine goodness of fit and good predictive power in forecasting private landowners- participation in this program. The empirical result of this paper expects to help the implementation of the afforestation programs in Taiwan.

Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC)

Wireless mesh networks based on IEEE 802.11 technology are a scalable and efficient solution for next generation wireless networking to provide wide-area wideband internet access to a significant number of users. The deployment of these wireless mesh networks may be within different authorities and without any planning, they are potentially overlapped partially or completely in the same service area. The aim of the proposed model is design a new model to Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC), the unplanned deployment of WMNs are determinates there performance. We use throughput optimization approach to model the unplanned WMNs deployment problem based on partitioning hierarchical cluster (PHC) based architecture, in this paper the researcher used bridge node by allowing interworking traffic between these WMNs as solution for performance degradation.

Characteristics of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Method

Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) of FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks

Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.

A New Cut–Through Mechanism in IEEE 802.16 Mesh Networks

IEEE 802.16 is a new wireless technology standard, it has some advantages, including wider coverage, higher bandwidth, and QoS support. As the new wireless technology for last mile solution, there are designed two models in IEEE 802.16 standard. One is PMP (point to multipoint) and the other is Mesh. In this paper we only focus on IEEE 802.16 Mesh model. According to the IEEE 802.16 standard description, Mesh model has two scheduling modes, centralized and distributed. Considering the pros and cons of the two scheduling, we present the combined scheduling QoS framework that the BS (Base Station) controls time frame scheduling and selects the shortest path from source to destination directly. On the other hand, we propose the Expedited Queue mechanism to cut down the transmission time. The EQ mechanism can reduce a lot of end-to-end delay in our QoS framework. Simulation study has shown that the average delay is smaller than contrasts. Furthermore, our proposed scheme can also achieve higher performance.

On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems

The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.

Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery

Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.

Investigating the Effectiveness of Self-Shading Strategy on Overall Thermal Transfer Value and Window Size in High Rise Buildings

So much energy is used in high rise buildings to fulfill the basic needs of users such as lighting and thermal comfort. Malaysia has hot and humid climate, buildings especially high rise buildings receive unnecessary solar radiation that cause more solar heat gain. Energy use specially electricity consumption in high rise buildings has increased. There have been growing concerns about energy consumption and its effect on environment. Building, energy and the environment are important issues that the designers should consider to them. Self protected form is one of possible ways against the impact of solar radiation in high rise buildings. The Energy performance of building envelopes was investigated in term of the Overall Thermal Transfer Value (OTTV ).In this paper, the amount of OTTV reduction was calculated through OTTV Equations to clear the effectiveness of self shading strategy on minimizing energy consumption for cooling interior spaces in high rise buildings which has considerable envelope areas against solar radiation. Also increasing the optimum window area was investigated using self-shading strategy in designing high rise buildings. As result, the significant reduction in OTTV was shown based on WWR.In addition slight increase was demonstrated in WWR that can influence on visible comfort interior spaces.

Design of Digital IIR filters with the Advantages of Model Order Reduction Technique

In this paper, a new model order reduction phenomenon is introduced at the design stage of linear phase digital IIR filter. The complexity of a system can be reduced by adopting the model order reduction method in their design. In this paper a mixed method of model order reduction is proposed for linear IIR filter. The proposed method employs the advantages of factor division technique to derive the reduced order denominator polynomial and the reduced order numerator is obtained based on the resultant denominator polynomial. The order reduction technique is used to reduce the delay units at the design stage of IIR filter. The validity of the proposed method is illustrated with design example in frequency domain and stability is also examined with help of nyquist plot.

The Design of Axisymmetric Ducts for Incompressible Flow with a Parabolic Axial Velocity Inlet Profile

In this paper a numerical algorithm is described for solving the boundary value problem associated with axisymmetric, inviscid, incompressible, rotational (and irrotational) flow in order to obtain duct wall shapes from prescribed wall velocity distributions. The governing equations are formulated in terms of the stream function ψ (x,y)and the function φ (x,y)as independent variables where for irrotational flow φ (x,y)can be recognized as the velocity potential function, for rotational flow φ (x,y)ceases being the velocity potential function but does remain orthogonal to the stream lines. A numerical method based on the finite difference scheme on a uniform mesh is employed. The technique described is capable of tackling the so-called inverse problem where the velocity wall distributions are prescribed from which the duct wall shape is calculated, as well as the direct problem where the velocity distribution on the duct walls are calculated from prescribed duct geometries. The two different cases as outlined in this paper are in fact boundary value problems with Neumann and Dirichlet boundary conditions respectively. Even though both approaches are discussed, only numerical results for the case of the Dirichlet boundary conditions are given. A downstream condition is prescribed such that cylindrical flow, that is flow which is independent of the axial coordinate, exists.

Methods for Manufacture of Corrugated Wire Mesh Laminates

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.