Variable-Relation Criterion for Analysis of the Memristor

To judge whether the memristor can be interpreted as the fourth fundamental circuit element, we propose a variable-relation criterion of fundamental circuit elements. According to the criterion, we investigate the nature of three fundamental circuit elements and the memristor. From the perspective of variables relation, the memristor builds a direct relation between the voltage across it and the current through it, instead of a direct relation between the magnetic flux and the charge. Thus, it is better to characterize the memristor and the resistor as two special cases of the same fundamental circuit element, which is the memristive system in Chua-s new framework. Finally, the definition of memristor is refined according to the difference between the magnetic flux and the flux linkage.

Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Development of Split Air-Conditioning System using Chill Water as the Cooling Medium

Current air conditioning system is using refrigerant as the cooling medium. The main purpose of this study is to develop an air conditioning system using chill water as the cooling medium. In this system, chill water used to replace refrigerant as the cooling medium. This study is focus on the split type unit air conditioning system only. It will be involving some renovation on the indoor unit and freezer. The cooling capability of this system was validate by few series of testing, which conducted at standard 36m3 office room. Result of the testing found that 0.1 m3 of chill water is able to maintain the room temperature within standard up to 4 ~ 8 hours. It expected able to maintain room temperature up to 10 hour with some improvement.

Biometric Methods and Implementation of Algorithms

Biometric measures of one kind or another have been used to identify people since ancient times, with handwritten signatures, facial features, and fingerprints being the traditional methods. Of late, Systems have been built that automate the task of recognition, using these methods and newer ones, such as hand geometry, voiceprints and iris patterns. These systems have different strengths and weaknesses. This work is a two-section composition. In the starting section, we present an analytical and comparative study of common biometric techniques. The performance of each of them has been viewed and then tabularized as a result. The latter section involves the actual implementation of the techniques under consideration that has been done using a state of the art tool called, MATLAB. This tool aids to effectively portray the corresponding results and effects.

Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Creating Streamribbons Based on Mass Conservative Streamlines

Streamribbon is used to visualize the rotation of the fluid flow. The rotation of flow is useful in fluid mechanics, engineering and geophysics. This paper introduces the construction technique of streamribbon using the streamline which is generated based on the law of mass conservation. The accuracy of constructed streamribbons is shown through two examples.

Stego Machine – Video Steganography using Modified LSB Algorithm

Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.

Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator

Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.

Shape Restoration of the Left Ventricle

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis

Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.

Effect of Geum Kokanicum Total Extract on Induced Nociception and Inflammation in Male Mice

The aim of this study is evaluating the antinociceptive and anti-inflamatory activity of Geum kokanicum. After determination total extract LD50, different doses of extract were chosen for intrapritoneal injections. In inflammation test, male NMRI mice were divided into 6 groups: control (normal saline), positive control (Dexamethasone 15mg/kg), and total extract (0.025, 0.05, 0.1, and 0.2 gr/kg). The inflammation was produced by xyleneinduced edema. In order to evaluate the antinociceptive effect of total extract, formalin test was used. Mice were divided into 6 groups: control, positive control (morphine 10mg/kg), and 4 groups which received total extract. Then they received Formalin. The animals were observed for the reaction to pain. Data were analyzed using One-way ANOVA followed by Tukey-Kramer multiple comparison test. LD50 was 1 gr/kg. Data indicated that 0.5,0.1 and 0.2 gr/kg doses of total extract have particular antinociceptive and antiinflammatory effects in a comparison with control (P

Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent

Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).

Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Extraction of Semantic Digital Signatures from MRI Photos for Image-Identification Purposes

This paper makes an attempt to solve the problem of searching and retrieving of similar MRI photos via Internet services using morphological features which are sourced via the original image. This study is aiming to be considered as an additional tool of searching and retrieve methods. Until now the main way of the searching mechanism is based on the syntactic way using keywords. The technique it proposes aims to serve the new requirements of libraries. One of these is the development of computational tools for the control and preservation of the intellectual property of digital objects, and especially of digital images. For this purpose, this paper proposes the use of a serial number extracted by using a previously tested semantic properties method. This method, with its center being the multi-layers of a set of arithmetic points, assures the following two properties: the uniqueness of the final extracted number and the semantic dependence of this number on the image used as the method-s input. The major advantage of this method is that it can control the authentication of a published image or its partial modification to a reliable degree. Also, it acquires the better of the known Hash functions that the digital signature schemes use and produces alphanumeric strings for cases of authentication checking, and the degree of similarity between an unknown image and an original image.

Two-dimensional Analytical Drain Current Model for Multilayered-Gate Material Engineered Trapezoidal Recessed Channel(MLGME-TRC) MOSFET: a Novel Design

In this paper, for the first time, a two-dimensional (2D) analytical drain current model for sub-100 nm multi-layered gate material engineered trapezoidal recessed channel (MLGMETRC) MOSFET: a novel design is presented and investigated using ATLAS and DEVEDIT device simulators, to mitigate the large gate leakages and increased standby power consumption that arise due to continued scaling of SiO2-based gate dielectrics. The twodimensional (2D) analytical model based on solution of Poisson-s equation in cylindrical coordinates, utilizing the cylindrical approximation, has been developed which evaluate the surface potential, electric field, drain current, switching metric: ION/IOFF ratio and transconductance for the proposed design. A good agreement between the model predictions and device simulation results is obtained, verifying the accuracy of the proposed analytical model.

Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

A New Hybrid RMN Image Segmentation Algorithm

The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).

Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Analysis of Event-related Response in Human Visual Cortex with fMRI

Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.