Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring

Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.

Time Organization for Urban Mobility Decongestion: A Methodology for People’s Profile Identification

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a methodology for predicting peoples’ intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples’ intentions to reschedule their activities (work, study, commerce, etc.).

Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform

How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the serviceability constraints.

A United Nations Safety Compliant Urban Vehicle Design

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Prevalence, Associated Factors, and Help-Seeking Behavior of Psychological Distress among International Students at the National University of Malaysia

Depression, anxiety, and stress are associated with decreased role functioning, productivity, and quality of life. International students are more prone to psychological distress as they face many stressors while studying abroad. The objectives of the study were to determine the prevalence and associated factors of depression, anxiety, and stress among international students, their help-seeking behavior, and their awareness of the available on-campus mental support services. A cross-sectional study with a purposive sampling method was performed on 280 international students at Universiti Kebangsaan Malaysia (UKM) between the age of 18 and 35 years. The Depression Anxiety Stress Scale-21 (DASS-21) questionnaire was used anonymously to assess the mental health of students. Socio-demographic, help-seeking behavior, and awareness data were obtained. Independent sample t-test, one-way ANOVA test, and multiple linear regression were used to explore associated factors. The overall prevalence of depression, anxiety, and stress among international students were 58.9%, 71.8%, and 53.9%, respectively. Age was significantly associated with depression and anxiety. Ethnicity showed a significant association with depression and stress. No other factors were found to be significantly associated with psychological distress. Only 9.6% of the international students had sought help from on-campus mental support services. Students who were aware of the presence of such services were only 21.4% of the participants. In conclusion, this study addressed the gap in the literature on the mental health of international students and provided data that could be used in intervention programs to improve the mental health of the increasing number of international students in Malaysia.

Estimation of Crustal Thickness within the Sokoto Basin North-Western Nigeria Using Bouguer Gravity Anomaly Data

This research proposes an interpretation of the Bouguer’ gravity anomaly data of some parts of Sokoto basin for the estimation of crustal thickness. The study area is bounded between latitudes 1100′0″N and 1300′0″N, and longitudes 400′0″E and 600′0″E that covered Koko, Jega, B/Kebbi, Argungu, Lema, Bodinga, Tamgaza, Gunmi,Daki Takwas, Dange, Sokoto, Ilella, T/Mafara, Anka, Maru, Gusau, K/Namoda, and Sabon Birni within Sokoto, Kebbi and Zamfara state respectively. The established map of the study area was digitized in X, Y and Z format using excel software package and the digitized data were processed using Surfer version 13 software. The Moho and Conrad depths based on a relationship between Bouguer’ gravity anomaly determined crustal thickness were estimated as 35 to 37 km and 19 to 21 km, respectively. The crustal region has been categorized into: Crustal thinning zone that is the region with high gravity anomaly value due to its greater geothermal energy and also Crustal thickening zone which the region with low anomaly values due to its lower geothermal energy. Birnin kebbi, Jega, Sokoto were identified as the region of hydrocarbon potential with an estimate of 35 km thickness within the crustal region which is referred to as crustal thickening as a result of its low but sufficient geothermal energy to decompose organic matter within the region to form hydrocarbons.

Simulation and Design of an Aerospace Mission Powered by “Candy” Type Fuel Engines

Sounding rockets are aerospace vehicles that were developed in the mid-20th century, and since then numerous investigations have been executed with the aim of innovate in this type of technology. However, the costs associated to the production of this type of technology are usually quite high, and therefore the challenge that exists today is to be able to reduce them. In this way, the main objective of this document is to present the design process of a Colombian aerospace mission capable to reach the thermosphere using low-cost “Candy” type solid fuel engines. This mission is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), which is an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. In this way, the investigations that have been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, have allowed the production of engines powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry. In this way, following the engineering iterative design methodology was possible to design a 2-stage sounding rocket with 1 solid fuel engine in each one, which was then simulated in RockSim V9.0 software and reached an apogee of approximately 150 km above sea level. Similarly, a speed equal to 5 Mach was obtained, which after performing a finite element analysis, it was shown that the rocket is strong enough to be able to withstand such speeds. Under these premises, it was demonstrated that it is possible to build a high-power aerospace mission at low cost, using Candy-type solid fuel engines. For this reason, the feasibility of carrying out similar missions clearly depends on the ability to replicate the engines in the best way, since as mentioned above, the design of the rocket is adequate to reach supersonic speeds and reach space. Consequently, with a team of at least 3 members, the mission can be obtained in less than 3 months. Therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.

Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria

Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.

Dynamics of Protest Mobilization and Rapid Demobilization in Post-2001 Afghanistan: Facing Enlightening Movement

Taking a relational approach, this paper analyzes the causal mechanisms associated with successful mobilization and rapid demobilization of the Enlightening Movement in post-2001 Afghanistan. The movement emerged after the state-owned Da Afghan Bereshna Sherkat (DABS) decided to divert the route for the Turkmenistan-Uzbekistan-Tajikistan-Afghanistan-Pakistan (TUTAP) electricity project. The grid was initially planned to go through the Hazara-inhabited province of Bamiyan, according to Afghanistan’s Power Sector Master Plan. The reroute served as an aide-mémoire of historical subordination to other ethno-religious groups for the Hazara community. It was also perceived as deprivation from post-2001 development projects, financed by international aid. This torched the accumulated grievances, which then gave birth to the Enlightening Movement. The movement had a successful mobilization. However, it demobilized after losing much of its mobilizing capabilities through an amalgamation of external and internal relational factors. The successful mobilization yet rapid demobilization constitutes the puzzle of this paper. From the theoretical perspective, this paper is significant as it establishes the applicability of contentious politics theory to protest mobilizations that occurred in Afghanistan, a context-specific, characterized by ethnic politics. Both primary and secondary data are utilized to address the puzzle. As for the primary resources, media coverage, interviews, reports, public media statements of the movement, involved in contentious performances, and data from Social Networking Services (SNS) are used. The covered period is from 2001-2018. As for the secondary resources, published academic articles and books are used to give a historical account of contentious politics. For data analysis, a qualitative comparative historical method is utilized to uncover the causal mechanisms associated with successful mobilization and rapid demobilization of the Movement. In this pursuit, both mobilization and demobilization are considered as larger political processes that could be decomposed to constituent mechanisms. Enlightening Movement’s framing and campaigns are first studied to uncover the associated mechanisms. Then, to avoid introducing some ad hoc mechanisms, the recurrence of mechanisms is checked against another case. Mechanisms qualify as robust if they are “recurrent” in different episodes of contention. Checking the recurrence of causal mechanisms is vital as past contentious events tend to reinforce future events. The findings of this paper suggest that the public sphere in Afghanistan is drastically different from Western democracies known as the birthplace of social movements. In Western democracies, when institutional politics did not respond, movement organizers occupied the public sphere, undermining the legitimacy of the government. In Afghanistan, the public sphere is ethicized. Considering the inter- and intra-relational dynamics of ethnic groups in Afghanistan, the movement reduced to an erosive inter- and intra-ethnic conflict. This undermined the cohesiveness of the movement, which then kicked-off its demobilization process.

The Southwestern Bangladesh’s Experience of Tidal River Management: An Analysis of Effectiveness and Challenges

The construction of coastal polders to reduce salinity ingress at greater Khulna-Jashore region area was initiated in the 1960s by Bangladesh Water Development Board (BWDB). Although successful in a short run the, the Coastal Embankment Project (CEP) and its predecessors are often held accountable for the entire ecological disasters that affected many people. To overcome the water-logging crisis the first Tidal River Management (TRM) at Beel Bhaiana, Bhabodaho was implemented by the affected local people in an unplanned. TRM is an eco-engineering, low cost and participatory approach that utilizes the natural tidal characteristics and the local community’s indigenous knowledge for design and operation of watershed management. But although its outcomes were overwhelming in terms of reducing water-logging, increasing navigability etc. at Beel Bhaina the outcomes of its consequent schemes were debatable. So this study aims to examine the effectiveness and impact of the TRM schemes. Primary data were collected through questionnaire survey, Focus Group Discussion (FGD) and Key Informant Interview (KII) so as to collect mutually complementary quantitative and qualitative information along with extensive literature review. The key aspects that were examined include community participation, community perception on effectiveness and operational challenges.

Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Designing of a Non-Zero Dispersion Shifted Fiber with Ultra-High Birefringence and High Non-Linearity

Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.

Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method

In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.

Bioconcentration Analysis of Iodine Species in Seaweed (Eucheuma cottonii) from Maluku Marine as Alternative Food Source

Seaweed is a type of macro algae which are good source of iodine and have been widely used as food and nutrition supplement. One of iodine species that found in ocean plant is iodate. Analysis of iodate in seaweed (Eucheuma cottonii) from coastal area of Maluku has been done. The determination is done by using spectrophotometric method. Iodate in sample is reduced in excess of potassium iodide in the presence of acid solution, and then is reacted with starch to form blue complex. The study found out that the highest wavelength on determination of iodate species using spectrophotometer analysis method is 570 nm. Optimum value to yield maximum absorption is used in this research. Contents of iodate in seawater from coastal area of Ambon Island, Western Seram and Southeast Maluku are 0.2655, 0.2719 and 0.1760 mg/L, respectively. While in seaweeds from Ambon Island, Western Seram, Southeast Maluku-Taar, Ohoidertawun and Wab are 6.3122, 6.3293, 6.2333, 3.7406 and 4.4207 mg/kg in dry weight. Bioconcentration (enrichment) factor of iodate in seaweed (Eucheuma cottonii) from the three samples (cluster) is different; in Coastal area of Ambon Island, Western Seram and Southeast Maluku respectively are 23.78, 23.28 and 27.26.

The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

The Magnetic Susceptibility of the Late Quaternary Loess in North-East of Iran and Its Correlation with Other Palaeoclimatical Parameters

Magnetic susceptibility (χ) is operational to identify of late quaternary glacial-interglacial cycles in loess-paleosol sequences. It is well accepted that many loess-paleosol sequences bear witness to cold-dry/warm-humid periods, well known as glacial-interglacial cycles, respectively. For this study, loess-paleosol sequence of north-east of Iran was magnetically investigated. The study area is situated at about 8 km away of Neka city, on the main road of Sari-Behshahr, in Mazandaran Province, north of Iran. The youngest deposits of study area are the late Quaternary wind-blown accumulations. In this study, the total number of 117 samples was collected from loess-paleosols units. After that, the natural remnant magnetization (NRM) and magnetic susceptibility (MS) of the samples were measured. Variation of MS of more than 110 loess samples was plotted to reveal the correlation of the MS and paleoclimatic changes. This study aims reconstruction of climatic changes (glacial-interglacial and stadials-interstadials cycles). To confirm our results we compared MS (χ) and the curves of other investigations in paleoclimatology. This correspondence abled us to recognize worldly events in the study area such as: Younger Dryas, the Last Glacial Maximum (LGM), deglaciation of Northern Hemisphere etc. The obtained magnetic data indicate that during almost 50 ka, at least two glacial-interglacial periods occurred in north-east of Iran. Further, variation of χ values revealed short period of climatically cycles known as stadials-interstadials. We recognized 4 stadials and a single stadial as colder sub-periods for S0 (recently soil-paleosol) and S2 (lower paleosol), respectively, Moreover, we recognized 6 warmer sub-periods (interstadials) for L1 (upper loess) and one interstadial L2 (lower loess).

Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.